Divergent Stiffness of One-Dimensional Growing Interfaces

被引:0
作者
Minoguchi, Mutsumi [1 ]
Sasa, Shin-ichi [1 ]
机构
[1] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan
关键词
RENORMALIZATION-GROUP ANALYSIS; LONG-RANGE ORDER; DIRECTED POLYMERS; GROWTH; PROBABILITY; TRANSPORT; DYNAMICS; THEOREM; NOISE;
D O I
10.1103/PhysRevLett.130.197101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When a spatially localized stress is applied to a growing one-dimensional interface, the interface deforms. This deformation is described by the effective surface tension representing the stiffness of the interface. We present that the stiffness exhibits divergent behavior in the large system size limit for a growing interface with thermal noise, which has never been observed for equilibrium interfaces. Furthermore, by connecting the effective surface tension with a space-time correlation function, we elucidate the mechanism that anomalous dynamical fluctuations lead to divergent stiffness.
引用
收藏
页数:7
相关论文
共 50 条
[31]   Biexciton in one-dimensional Mott insulators [J].
Miyamoto, T. ;
Kakizaki, T. ;
Terashige, T. ;
Hata, D. ;
Yamakawa, H. ;
Morimoto, T. ;
Takamura, N. ;
Yada, H. ;
Takahashi, Y. ;
Hasegawa, T. ;
Matsuzaki, H. ;
Tohyama, T. ;
Okamoto, H. .
COMMUNICATIONS PHYSICS, 2019, 2 (1)
[32]   Replication in one-dimensional cellular automata [J].
Gravner, Janko ;
Gliner, Genna ;
Pelfrey, Mason .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (18) :1460-1474
[33]   Thermalization in a one-dimensional integrable system [J].
Grisins, Pjotrs ;
Mazets, Igor E. .
PHYSICAL REVIEW A, 2011, 84 (05)
[34]   DIFFUSION IN ONE-DIMENSIONAL DISORDERED LATTICE [J].
Hung, P. K. ;
Mung, T. V. ;
Hong, N. V. .
MODERN PHYSICS LETTERS B, 2012, 26 (01)
[35]   Statistics of defects in one-dimensional components [J].
Todinov, MT .
COMPUTATIONAL MATERIALS SCIENCE, 2002, 24 (04) :430-442
[36]   One-dimensional iron oxides nanostructures [J].
Chen Di ;
Xiong Shi ;
Ran SiHan ;
Liu Bin ;
Wang LiMing ;
Shen GuoZhen .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (07) :1190-1199
[37]   ONE-DIMENSIONAL CONSOLIDATION WITH UNCERTAIN PROPERTIES [J].
HONG, HP .
CANADIAN GEOTECHNICAL JOURNAL, 1992, 29 (01) :161-165
[38]   One-dimensional model of martensitic transformations [J].
Tang, M ;
Zhang, JH ;
Hsu, TY .
ACTA MATERIALIA, 2002, 50 (03) :467-474
[39]   One-dimensional solidification of supercooled melts [J].
Font, F. ;
Mitchell, S. L. ;
Myers, T. G. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 62 :411-421
[40]   DEFORMATION THEORY OF ONE-DIMENSIONAL SYSTEMS [J].
Smania, Daniel .
JOURNAL OF MODERN DYNAMICS, 2022, 21 :1-20