Optical Orbital Angular Momentum Processors with Electrically Tailored Working Bands

被引:20
作者
Xu, Chun-Ting [1 ,2 ]
Zhang, De-Wei [1 ,2 ]
Yuan, Rui [1 ,2 ]
Chen, Quan-Ming [1 ,2 ]
Liang, Xiao [3 ]
Hu, Wei [1 ,2 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Key Lab Intelligent Opt Sensing & Manipulat, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Coll Engn & Appl Sci, Nanjing 210023, Peoples R China
[3] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
cholesteric liquid crystals; geometric phase; orbital angular momentum; photoalignment; POLARIZATION; REFLECTION; MIRRORS; PHASE; LIGHT;
D O I
10.1002/lpor.202201013
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Novel options for multiplexing, such as orbital angular momentum (OAM), are sought to satisfy the explosive growth of information capacity. Consequently, spatial phase modulation with on-demand tailoring of working bands is increasingly investigated. In this study, a polymer-stabilized cholesteric liquid crystal is used to address this requirement. A varying DC voltage is applied, and the working band is increased over eightfold owing to the electric-induced gradient pitch of the polymer network. Thus, the working band of an OAM processor is reversibly switched between narrowband and broadband states. An OAM-multiplexing hologram is designed for parallel OAM encoding and decoding, enabling a wavelength-division-multiplexing compatible approach for in situ and non-destructive OAM processing. The proposed design offers a promising solution for the on-demand tailoring of working bands in liquid crystal planar optics and can promote advancements in massive information transmission and large-capacity data processing.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Optical communications using orbital angular momentum beams
    Willner, A. E.
    Huang, H.
    Yan, Y.
    Ren, Y.
    Ahmed, N.
    Xie, G.
    Bao, C.
    Li, L.
    Cao, Y.
    Zhao, Z.
    Wang, J.
    Lavery, M. P. J.
    Tur, M.
    Ramachandran, S.
    Molisch, A. F.
    Ashrafi, N.
    Ashrafi, S.
    ADVANCES IN OPTICS AND PHOTONICS, 2015, 7 (01): : 66 - 106
  • [42] Fourier relationship between angular position and optical orbital angular momentum
    Yao, Eric
    Franke-Arnold, Sonja
    Courtial, Johannes
    Barnett, Stephen
    Padgett, Miles
    OPTICS EXPRESS, 2006, 14 (20): : 9071 - 9076
  • [43] Transfer of optical orbital angular momentum to a bound electron
    Schmiegelow, Christian T.
    Schulz, Jonas
    Kaufmann, Henning
    Ruster, Thomas
    Poschinger, Ulrich G.
    Schmidt-Kaler, Ferdinand
    NATURE COMMUNICATIONS, 2016, 7
  • [44] Optical orbital angular momentum from the curl of polarization
    Wang, Xi-Lin
    Chen, Jing
    Li, Yongnan
    Ding, Jianping
    Guo, Cheng-Shan
    Wang, Hui-Tian
    PHYSICAL REVIEW LETTERS, 2010, 105 (25)
  • [45] Optical orbital angular momentum under strong scintillation
    Mabena, Chemist M.
    Roux, Filippus S.
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [46] Optical Gaussian States Carrying Orbital Angular Momentum
    Zhebrak, Elena D.
    JOURNAL OF RUSSIAN LASER RESEARCH, 2016, 37 (03) : 227 - 235
  • [47] Tunable orbital angular momentum generation in optical fibers
    Jiang, Youchao
    Ren, Guobin
    Lian, Yudong
    Zhu, Bofeng
    Jin, Wenxing
    Jian, Shuisheng
    OPTICS LETTERS, 2016, 41 (15) : 3535 - 3538
  • [48] Underwater optical communications using orbital angular momentum-based spatial division multiplexing
    Willner, Alan E.
    Zhao, Zhe
    Ren, Yongxiong
    Li, Long
    Xie, Guodong
    Song, Haoqian
    Liu, Cong
    Zhang, Runzhou
    Bao, Changjing
    Pang, Kai
    OPTICS COMMUNICATIONS, 2018, 408 : 21 - 25
  • [49] Azimuthal beam shaping in orbital angular momentum basis
    Lin, Zhongzheng
    Zhong, Weihang
    Wu, Lixun
    He, Lin
    Chen, Hongjia
    Hu, Jianqi
    Chen, Yujie
    Yu, Siyuan
    ADVANCED PHOTONICS NEXUS, 2024, 3 (02):
  • [50] Terahertz Orbital Angular Momentum: Generation, Detection and Communication
    Yang, Hang
    Zheng, Shilie
    He, Wei
    Yu, Xianbin
    Zhang, Xianmin
    CHINA COMMUNICATIONS, 2021, 18 (05) : 131 - 152