Tailoring interfacial interaction in GaN@NG heterojunction via electron/ion bridges for enhanced lithium-ion storage performance

被引:24
作者
Sun, Changlong [1 ]
Wang, Yan-Jie [1 ,2 ]
Liu, Dan [1 ]
Fang, Baizeng [2 ,4 ]
Yan, Wei [3 ]
Zhang, Jiujun [2 ,3 ]
机构
[1] Dongguan Univ Technol, Sch Mat Sci & Engn, New Energy & Adv Funct Mat Grp, Dongguan 523808, Guangdong, Peoples R China
[2] Shanghai Univ, Inst Sustainable Energy, Coll Sci, Shanghai 200444, Peoples R China
[3] Fuzhou Univ, Sch Mat Sci & Engn, Fuzhou 350108, Peoples R China
[4] Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
基金
中国博士后科学基金;
关键词
Gallium nitride; Heterojunction; Interfacial engineering; Lithium-ion batteries; DFT calculations; OXIDE-ASSISTED SYNTHESIS; ANODE MATERIAL; HIGH-CAPACITY; GRAPHENE; CARBON; NANOSHEETS; BATTERY; REDUCTION; EVOLUTION;
D O I
10.1016/j.cej.2022.139603
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, gallium nitride (GaN) nanoparticles is synthesized on the nitrogen-doped graphene (NG) (GaN@NG). X-ray absorption fine structure (XAFS) shows the distinct interfacial interaction (Ga-N/N-C). This well-designed GaN@NG shows good reversible capacity (793.2 mAh/g at 0.1 A/g) and cycling durability with 98.5 % capacity retention at 2.0 A/g after 2000 cycles. Both DFT analysis and electrochemical kinetic analysis reveal that the configuration of intriguing electron and ion bridges is able to control and tailor the interfacial interaction via the interfacial coupled chemical bonds in GaN@NG heterojunction. Such electron/ion bridges can enhance the interfacial charge transfer kinetics and prevent pulverization/aggregation via the ion/electron channel during the cycling. As expected, the lithium-ion full cell (LiFePO4/C//GaN@NG) exhibits impressive energy and power densities and maintains superior cycling stability. This electron/ion bridges-related structural engineering strategy can open opportunities for the traditional electrode material to achieve the high-performance lithium ion storage and beyond.
引用
收藏
页数:9
相关论文
共 70 条
[1]   Elucidating the reaction mechanism of SnF2@C nanocomposite as a high-capacity anode material for Na-ion batteries [J].
Ali, Ghulam ;
Lee, Ji-Hoon ;
Oh, Si Hyoung ;
Jung, Hun-Gi ;
Chung, Kyung Yoon .
NANO ENERGY, 2017, 42 :106-114
[2]   0.4 Ah class graphite/LiMn2O4 lithium-ion battery prototypes [J].
Appetecchi, GB ;
Prosini, PP .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :793-797
[3]   Graphene Synthesis on Cubic SiC/Si Wafers. Perspectives for Mass Production of Graphene-Based Electronic Devices [J].
Aristov, Victor Yu. ;
Urbanik, Grzegorz ;
Kummer, Kurt ;
Vyalikh, Denis V. ;
Molodtsova, Olga V. ;
Preobrajenski, Alexei B. ;
Zakharov, Alexei A. ;
Hess, Christian ;
Haenke, Torben ;
Buechner, Bernd ;
Vobornik, Ivana ;
Fujii, Jun ;
Panaccione, Giancarlo ;
Ossipyan, Yuri A. ;
Knupfer, Martin .
NANO LETTERS, 2010, 10 (03) :992-995
[4]   Recent advances in metal nitrides as high-performance electrode materials for energy storage devices [J].
Balogun, Muhammad-Sadeeq ;
Qiu, Weitao ;
Wang, Wang ;
Fang, Pingping ;
Lu, Xihong ;
Tong, Yexiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (04) :1364-1387
[5]   Heterointerface Engineering of Hierarchical Bi2S3/MoS2 with Self-Generated Rich Phase Boundaries for Superior Sodium Storage Performance [J].
Cao, Liang ;
Liang, Xinghui ;
Ou, Xing ;
Yang, Xianfeng ;
Li, Yangzhong ;
Yang, Chenghao ;
Lin, Zhang ;
Liu, Meilin .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (16)
[6]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[7]   Zigzag GaN/Ga2O3 heterogeneous nanowires: Synthesis, optical and gas sensing properties [J].
Chang, Li-Wei ;
Chang, Jan-Hau ;
Yeh, Jien-Wei ;
Lin, Heh-Nan ;
Shih, Han C. .
AIP ADVANCES, 2011, 1 (03)
[8]   Catalytic growth and characterization of gallium nitride nanowires [J].
Chen, CC ;
Yeh, CC ;
Chen, CH ;
Yu, MY ;
Liu, HL ;
Wu, JJ ;
Chen, KH ;
Chen, LC ;
Peng, JY ;
Chen, YF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (12) :2791-2798
[9]   Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis [J].
Chen, Pengzuo ;
Zhang, Nan ;
Wang, Sibo ;
Zhou, Tianpei ;
Tong, Yun ;
Ao, Chengcheng ;
Yan, Wensheng ;
Zhang, Lidong ;
Chu, Wangsheng ;
Wu, Changzheng ;
Xie, Yi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (14) :6635-6640
[10]   Atomically Dispersed Iron-Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions [J].
Chen, Pengzuo ;
Zhou, Tianpei ;
Xing, Lili ;
Xu, Kun ;
Tong, Yun ;
Xie, Hui ;
Zhang, Lidong ;
Yan, Wensheng ;
Chu, Wangsheng ;
Wu, Changzheng ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (02) :610-614