Minimum Error Entropy Rauch-Tung-Striebel Smoother

被引:4
作者
He, Jiacheng [1 ]
Wang, Hongwei [2 ]
Wang, Gang [3 ]
Zhong, Shan [1 ]
Peng, Bei [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Natl Key Lab Sci & Technol Commun, Chengdu 611731, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Entropy; Smoothing methods; Noise measurement; Heavily-tailed distribution; Filtering; Nonlinear systems; Probability density function; Minimum error entropy criterion; outliers; Rauch-Tung-Striebel smoother; KALMAN; CORRENTROPY; RECONSTRUCTION; MINIMIZATION; ALGORITHM;
D O I
10.1109/TAES.2023.3312057
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In real applications, non-Gaussian distributions are frequently caused by outliers and impulsive disturbances, and these will impair the performance of the Rauch-Tung-Striebel (RTS) smoother. In this study, a modified RTS smoothing algorithm combined with the minimum error entropy (MEE) criterion (MEE-RTS) is developed, and by employing the Taylor series linearization method, it is also expanded to the state estimation of nonlinear systems. The proposed methods improve the robustness of the conventional RTS smoother against complex non-Gaussian noises. In addition, we examine the MEE-RTS smoother's mean error behavior, mean square error behavior, and computational complexity, and the performance of the proposed algorithms is verified by comparing it with existing RTS-type smoothers.
引用
收藏
页码:8901 / 8914
页数:14
相关论文
共 46 条
  • [1] Alexander T.S., 2012, Adaptive Signal Processing: Theory and Applications
  • [2] Cubature Kalman smoothers
    Arasaratnam, Ienkaran
    Haykin, Simon
    [J]. AUTOMATICA, 2011, 47 (10) : 2245 - 2250
  • [3] An l1-Laplace Robust Kalman Smoother
    Aravkin, Aleksandr Y.
    Bell, Bradley M.
    Burke, James V.
    Pillonetto, Gianluigi
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (12) : 2892 - 2905
  • [4] Minimum Error Entropy Kalman Filter
    Chen, Badong
    Dang, Lujuan
    Gu, Yuantao
    Zheng, Nanning
    Principe, Jose C.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (09): : 5819 - 5829
  • [5] Maximum correntropy Kalman filter
    Chen, Badong
    Liu, Xi
    Zhao, Haiquan
    Principe, Jose C.
    [J]. AUTOMATICA, 2017, 76 : 70 - 77
  • [6] Cubature Kalman Filter Under Minimum Error Entropy With Fiducial Points for INS/GPS Integration
    Dang, Lujuan
    Chen, Badong
    Huang, Yulong
    Zhang, Yonggang
    Zhao, Haiquan
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (03) : 450 - 465
  • [7] Robust Power System State Estimation With Minimum Error Entropy Unscented Kalman Filter
    Dang, Lujuan
    Chen, Badong
    Wang, Shiyuan
    Ma, Wentao
    Ren, Pengju
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (11) : 8797 - 8808
  • [8] An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems
    Erdogmus, D
    Principe, JC
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (07) : 1780 - 1786
  • [9] A Background-Impulse Kalman Filter With Non-Gaussian Measurement Noises
    Fan, Xuxiang
    Wang, Gang
    Han, Jiachen
    Wang, Yinghui
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (04): : 2434 - 2443
  • [10] Feng G., 2022, Signal Process., V203