Machine Learning and Explainable Artificial Intelligence to Predict Occult Pelvic Nodal Metastases in Prostate Cancer

被引:0
|
作者
Semwal, H. [1 ]
Ladbury, C. J. [2 ]
Hao, C. [2 ]
Amini, A. [2 ]
Wong, J. Y. C. [2 ]
Li, R. [2 ]
Glaser, S. M. [2 ]
Dandapani, S. V. [2 ]
机构
[1] Univ Calif Los Angeles, Dept Integrat Biol & Physiol, Los Angeles, CA USA
[2] City Hope Natl Med Ctr, Dept Radiat Oncol, Duarte, CA USA
来源
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS | 2023年 / 117卷 / 02期
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
2950
引用
收藏
页码:E435 / E435
页数:1
相关论文
共 50 条
  • [21] Harnessing machine learning to predict colorectal cancer metastasis: A promising artificial intelligence frontier
    Awais, Abdul Raffay
    Manzoor, Ibrahim
    Pakistan, Mustafa Mansoor
    EJSO, 2024, 50 (11):
  • [22] Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma
    Bur, Andres M.
    Holcomb, Andrew
    Goodwin, Sara
    Woodroof, Janet
    Karadaghy, Omar
    Shnayder, Yelizaveta
    Kakarala, Kiran
    Brant, Jason
    Shew, Matthew
    ORAL ONCOLOGY, 2019, 92 : 20 - 25
  • [23] Artificial intelligence and machine learning in cancer imaging
    Koh, Dow-Mu
    Papanikolaou, Nickolas
    Bick, Ulrich
    Illing, Rowland
    Kahn, Charles E., Jr.
    Kalpathi-Cramer, Jayshree
    Matos, Celso
    Marti-Bonmati, Luis
    Miles, Anne
    Mun, Seong Ki
    Napel, Sandy
    Rockall, Andrea
    Sala, Evis
    Strickland, Nicola
    Prior, Fred
    COMMUNICATIONS MEDICINE, 2022, 2 (01):
  • [24] Artificial intelligence and machine learning in cancer imaging
    Dow-Mu Koh
    Nickolas Papanikolaou
    Ulrich Bick
    Rowland Illing
    Charles E. Kahn
    Jayshree Kalpathi-Cramer
    Celso Matos
    Luis Martí-Bonmatí
    Anne Miles
    Seong Ki Mun
    Sandy Napel
    Andrea Rockall
    Evis Sala
    Nicola Strickland
    Fred Prior
    Communications Medicine, 2
  • [25] An interpretable schizophrenia diagnosis framework using machine learning and explainable artificial intelligence
    Shivaprasad, Samhita
    Chadaga, Krishnaraj
    Dias, Cifha Crecil
    Sampathila, Niranjana
    Prabhu, Srikanth
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [26] Interpretability and Transparency of Machine Learning in File Fragment Analysis with Explainable Artificial Intelligence
    Jinad, Razaq
    Islam, A. B. M.
    Shashidhar, Narasimha
    ELECTRONICS, 2024, 13 (13)
  • [27] A survey of artificial intelligence/machine learning-based trends for prostate cancer analysis
    Sailunaz, Kashfia
    Bestepe, Deniz
    Alhajj, Lama
    Ozyer, Tansel
    Rokne, Jon
    Alhajj, Reda
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2024, 13 (01):
  • [28] Cancer Metastasis Prediction and Genomic Biomarker Identification through Machine Learning and eXplainable Artificial Intelligence in Breast Cancer Research
    Yagin, Burak
    Yagin, Fatma Hilal
    Colak, Cemil
    Inceoglu, Feyza
    Kadry, Seifedine
    Kim, Jungeun
    DIAGNOSTICS, 2023, 13 (21)
  • [29] Prostate cancer classification from ultrasound and MRI images using deep learning based Explainable Artificial Intelligence
    Hassan, Md Rafiul
    Islam, Md Fakrul
    Uddin, Md Zia
    Ghoshal, Goutam
    Hassan, Mohammad Mehedi
    Huda, Shamsul
    Fortino, Giancarlo
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 127 : 462 - 472
  • [30] Explainable artificial intelligence for stroke prediction through comparison of deep learning and machine learning models
    Moulaei, Khadijeh
    Afshari, Lida
    Moulaei, Reza
    Sabet, Babak
    Mousavi, Seyed Mohammad
    Afrash, Mohammad Reza
    SCIENTIFIC REPORTS, 2024, 14 (01):