Machine Learning and Explainable Artificial Intelligence to Predict Occult Pelvic Nodal Metastases in Prostate Cancer

被引:0
|
作者
Semwal, H. [1 ]
Ladbury, C. J. [2 ]
Hao, C. [2 ]
Amini, A. [2 ]
Wong, J. Y. C. [2 ]
Li, R. [2 ]
Glaser, S. M. [2 ]
Dandapani, S. V. [2 ]
机构
[1] Univ Calif Los Angeles, Dept Integrat Biol & Physiol, Los Angeles, CA USA
[2] City Hope Natl Med Ctr, Dept Radiat Oncol, Duarte, CA USA
来源
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS | 2023年 / 117卷 / 02期
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
2950
引用
收藏
页码:E435 / E435
页数:1
相关论文
共 50 条
  • [1] Machine learning and explainable artificial intelligence to predict pathologic stage in men with localized prostate cancer
    Semwal, Hemal
    Ladbury, Colton
    Sabbagh, Ali
    Mohamad, Osama
    Tilki, Derya
    Amini, Arya
    Wong, Jeffrey
    Li, Yun Rose
    Glaser, Scott
    Yuh, Bertram
    Dandapani, Savita
    PROSTATE, 2024,
  • [2] Machine learning can predict the pelvic nodal status of prostate cancer (PC) patients
    De Bari, B.
    Vallati, M.
    Gatta, R.
    Girelli, G.
    Meattini, I.
    Ricardi, U.
    Bertoni, F.
    Buglione, M.
    Krengli, M.
    Magrini, S. M.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2015, 191 (01) : 86 - 87
  • [3] Explainable Artificial Intelligence and Machine Learning
    Raunak, M. S.
    Kuhn, Rick
    COMPUTER, 2021, 54 (10) : 25 - 27
  • [4] Employing machine learning (ML) and explainable artificial intelligence (XAI) to predict and explain suicidal ideation among patients with prostate cancer
    Sankaran, Satheesh Kumar Poolakkad
    Mohan, Minu
    Epstein, Joel Brian
    Pili, Roberto
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [5] Explainable artificial intelligence to predict and identify prostate cancer tissue by gene expression
    Ramirez-Mena, Alberto
    Andres-Leon, Eduardo
    Alvarez-Cubero, Maria Jesus
    Anguita-Ruiz, Augusto
    Martinez-Gonzalez, Luis Javier
    Alcala-Fdez, Jesus
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 240
  • [6] Explainable and visualizable machine learning models to predict biochemical recurrence of prostate cancer
    Lu, Wenhao
    Zhao, Lin
    Wang, Shenfan
    Zhang, Huiyong
    Jiang, Kangxian
    Ji, Jin
    Chen, Shaohua
    Wang, Chengbang
    Wei, Chunmeng
    Zhou, Rongbin
    Wang, Zuheng
    Li, Xiao
    Wang, Fubo
    Wei, Xuedong
    Hou, Wenlei
    CLINICAL & TRANSLATIONAL ONCOLOGY, 2024, 26 (09): : 2369 - 2379
  • [7] A new era: artificial intelligence and machine learning in prostate cancer
    S. Larry Goldenberg
    Guy Nir
    Septimiu E. Salcudean
    Nature Reviews Urology, 2019, 16 : 391 - 403
  • [8] A new era: artificial intelligence and machine learning in prostate cancer
    Goldenberg, S. Larry
    Nir, Guy
    Salcudean, Septimiu E.
    NATURE REVIEWS UROLOGY, 2019, 16 (07) : 391 - 403
  • [9] Explainable artificial intelligence for machine learning prediction of bandgap energies
    Masuda, Taichi
    Tanabe, Katsuaki
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (17)
  • [10] Explainable artificial intelligence and machine learning: A reality rooted perspective
    Emmert-Streib, Frank
    Yli-Harja, Olli
    Dehmer, Matthias
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (06)