Convergence rates of the modified forward reflected backward splitting algorithm in Banach spaces

被引:0
作者
Guan, Weibo [1 ]
Song, Wen [1 ]
机构
[1] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 05期
关键词
convergence rate; forward-backward splitting algorithm; Banach spaces; FORWARD-BACKWARD; SIGNAL RECOVERY; SUM;
D O I
10.3934/math.2023615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the problem of minimizing the sum of two convex functions, one being smooth and the other non-smooth in Banach space. In this paper, we introduce a non-traditional forward -backward splitting method for solving such minimization problem. We establish different convergence estimates under different stepsize assumptions.
引用
收藏
页码:12195 / 12216
页数:22
相关论文
共 23 条
[1]  
Alber Y., 2006, Nonlinear Ill Posed Problems of Monotone Type
[2]  
Alber Y. I., 2002, COMMUNICATIONS APPL, V6, P89
[3]  
Alber Y. I, 1993, MATHEMATICS-BASEL, V1, P1109, DOI [10.48550/arXiv.functan/9311001, DOI 10.48550/ARXIV.FUNCTAN/9311001]
[4]  
[Anonymous], 1997, Abstract and Applied Analysis
[5]   COUPLING FORWARD-BACKWARD WITH PENALTY SCHEMES AND PARALLEL SPLITTING FOR CONSTRAINED VARIATIONAL INEQUALITIES [J].
Attouch, Hedy ;
Czarnecki, Marc-Olivier ;
Peypouquet, Juan .
SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (04) :1251-1274
[6]  
Bertsekas D., 1999, Nonlinear Programming
[7]   Proximal analysis in reflexive smooth Banach spaces [J].
Bounkhel, M. ;
Al-Yusof, R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (07) :1921-1939
[9]  
BROWDER FE, 1966, ARCH RATION MECH AN, V21, P259
[10]  
Cioranescu I., 1990, MATH ITS APPL, V62