On bivariate Teissier model using Copula: dependence properties, and case studies

被引:1
作者
Tyagi, Shikhar [1 ]
机构
[1] Christ Deemed be Univ, Dept Stat & Data Sci, Bangalore, India
关键词
Applications; Bayesian; Bivariate continuous model; Copula; Dependence; FGM; Modelling; Inference; MCMC; Teissier; DISTRIBUTIONS; EXTENSION;
D O I
10.1007/s13198-024-02266-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To precisely represent bivariate continuous variables, this work presents an innovative approach that emphasizes the interdependencies between the variables. The technique is based on the Teissier model and the Farlie-Gumbel-Morgenstern (FGM) copula and seeks to create a complete framework that captures every aspect of associated occurrences. The work addresses data variability by utilizing the oscillatory properties of the FGM copula and the flexibility of the Teissier model. Both theoretical formulation and empirical realization are included in the evolution, which explains the joint cumulative distribution function F(z1,z2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {F}(z_{1}, z_{2})$$\end{document}, the marginals F(z1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {F}(z_{1})$$\end{document} and F(z2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {F} (z_{2})$$\end{document}, and the probability density function (PDF) f(z1,z2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {f}(z_{1},z_{2})$$\end{document}. The novel modeling of bivariate lifetime phenomena that combines the adaptive properties of the Teissier model with the oscillatory characteristics of the FGM copula represents the contribution. The study emphasizes the effectiveness of the strategy in controlling interdependencies while advancing academic knowledge and practical application in bivariate modelling. In parameter estimation, maximum likelihood and Bayesian paradigms are employed through the use of the Markov Chain Monte Carlo (MCMC). Theorized models are examined closely using rigorous model comparison techniques. The relevance of modern model paradigms is demonstrated by empirical findings from the Burr dataset.
引用
收藏
页码:2483 / 2499
页数:17
相关论文
共 50 条
[1]  
Abd Elaal M.K., 2017, Appl. Math. Sci, V11, P1155
[2]  
Abulebda M, 2023, THAIL STATIST, V21, P291
[3]  
Abulebda M, 2022, STATISTICA, V82, P15
[4]  
Agiwal V., 2023, REVSTAT-Statistical Journal
[5]  
Almetwally EM, 2021, COMPLEXITY
[6]   A new extension of bivariate FGM copulas [J].
Amblard, Cecile ;
Girard, Stephane .
METRIKA, 2009, 70 (01) :1-17
[7]   TIME-DEPENDENT ASSOCIATION MEASURES FOR BIVARIATE SURVIVAL DISTRIBUTIONS [J].
ANDERSON, JE ;
LOUIS, TA ;
HOLM, NV ;
HARVALD, B .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (419) :641-650
[8]  
Balakrishnan N, 2009, CONTINUOUS BIVARIATE, DOI 10.1007/b101765
[9]   Some aging properties of Weibull models [J].
Bhattacharjee, Subarna ;
Misra, Satya Kumar .
ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2016, 9 (02) :297-307
[10]   Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals [J].
Chacko, Manoj ;
Mohan, Rakhi .
COMPUTATIONAL STATISTICS, 2019, 34 (01) :233-252