Explicit near-symplectic integrators for post-Newtonian Hamiltonian systems

被引:2
作者
Mei, Lijie [1 ,2 ]
Huang, Li [3 ,4 ]
机构
[1] Yunnan Normal Univ, Sch Math, Kunming 650500, Peoples R China
[2] Yunnan Normal Univ, Yunnan Key Lab Modern Analyt Math & Applicat, Kunming 650500, Peoples R China
[3] Chinese Acad Sci, Purple Mt Observ, Nanjing 210023, Peoples R China
[4] Univ Sci & Technol China, Sch Astron & Space Sci, Hefei 230026, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 01期
基金
中国国家自然科学基金;
关键词
CONSTRUCTION; DYNAMICS;
D O I
10.1140/epjc/s10052-024-12432-2
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Explicit symplectic integrators are powerful and widely used for Hamiltonian systems. However, once the post-Newtonian (PN) effect is considered to provide more precise modeling for the N-body problem, explicit symplectic methods cannot be constructed due to the nonseparability of the Hamiltonian. Thus, the available symplectic method is either fully implicit or semi-implicit, which decreases the efficiency because of the implicit iteration used during the evolution. In this paper, we aim to explore efficient explicit methods whose performance is mostly like symplectic methods for PN Hamiltonian systems. Taking the small parameter epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} appearing in PN terms into consideration, we replace the implicit symplectic solver with explicit solvers in the mixed symplectic method to solve the PN term and then derive three explicit methods. It is theoretically shown that the proposed methods are respectively second-order, fourth-order, and pseudo-fourth-order, and that their closeness to the corresponding symplectic methods are O(epsilon 3h3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {O}}(\varepsilon <^>{3}h<^>{3}),$$\end{document}O(epsilon 5h5),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {O}}(\varepsilon <^>{5}h<^>{5}),$$\end{document} and O(epsilon 3h3).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {O}}(\varepsilon <^>{3}h<^>{3}).$$\end{document} That is, they are explicit near-symplectic methods with the presence of the small parameter epsilon.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon .$$\end{document} Numerical experiments with the Hamiltonian problem of spinning compact binaries show that the energy errors and orbital errors of the proposed explicit near-symplectic methods are indistinguishable from the corresponding mixed semi-implicit symplectic methods. The very small magnitude of the difference between the proposed explicit near-symplectic methods and the mixed symplectic methods confirms our theoretical analysis of their closeness to symplecticity. Finally, the much less CPU time consumed by the proposed methods highlights their most important advantage of high efficiency over the mixed symplectic methods.
引用
收藏
页数:12
相关论文
共 54 条
[1]   Consistency of post-Newtonian waveforms with numerical relativity [J].
Baker, John G. ;
van Meter, James R. ;
McWilliams, Sean T. ;
Centrella, Joan ;
Kelly, Bernard J. .
PHYSICAL REVIEW LETTERS, 2007, 99 (18)
[2]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[3]  
Benettin G., 1980, Meccanica, V15, P9, DOI 10.1007/BF02128236
[4]   Transition from inspiral to plunge in precessing binaries of spinning black holes [J].
Buonanno, Alessandra ;
Chen, Yanbei ;
Damour, Thibault .
PHYSICAL REVIEW D, 2006, 74 (10)
[5]   ACCURATE LONG-TERM INTEGRATION OF DYNAMICAL-SYSTEMS [J].
CALVO, MP ;
HAIRER, E .
APPLIED NUMERICAL MATHEMATICS, 1995, 18 (1-3) :95-105
[6]   Pseudo-high-order symplectic integrators [J].
Chambers, JE ;
Murison, MA .
ASTRONOMICAL JOURNAL, 2000, 119 (01) :425-433
[7]   Symplectic integrators from composite operator factorizations [J].
Chin, SA .
PHYSICS LETTERS A, 1997, 226 (06) :344-348
[8]   Physics of symplectic integrators: Perihelion advances and symplectic corrector algorithms [J].
Chin, Siu A. .
PHYSICAL REVIEW E, 2007, 75 (03)
[9]   n-body problem in general relativity up to the second post-Newtonian order from perturbative field theory [J].
Chu, Yi-Zen .
PHYSICAL REVIEW D, 2009, 79 (04)
[10]   Equivalence between the ADM-Hamiltonian and the harmonic-coordinates approaches to the third post-Newtonian dynamics of compact binaries -: art. no. 044021 [J].
Damour, T ;
Jaranowski, P ;
Schäfer, G .
PHYSICAL REVIEW D, 2001, 63 (04)