Population monotonic allocation schemes for the two-period economic lot-sizing games

被引:1
作者
Jin, Qingwei [1 ]
Wu, Yi [2 ]
Zeng, Yinlian [3 ,4 ]
Zhang, Lianmin [5 ]
机构
[1] Zhejiang Univ, Sch Management, Hangzhou 310058, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Shenzhen Technol Univ, Coll Urban Transportat & Logist, Shenzhen 518118, Peoples R China
[4] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Peoples R China
[5] Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
基金
中国国家自然科学基金;
关键词
Cooperative game theory; Population monotonic allocation scheme; Economic lot-sizing game;
D O I
10.1016/j.orl.2023.03.009
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
It is an open question whether a population monotonic allocation scheme (PMAS) exists for the economic lot-sizing games (ELSGs) with holding and backlogging. In this paper, we contribute in showing that a PMAS exists for the two-period ELSGs with holding and backlogging by constructing a closed-form PMAS. Our results partially answer the open question and shed some light on how to construct a closed-form PMAS for ELSGs.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:296 / 303
页数:8
相关论文
共 13 条
[1]   Population Monotonicity in Newsvendor Games [J].
Chen, Xin ;
Gao, Xiangyu ;
Hu, Zhenyu ;
Wang, Qiong .
MANAGEMENT SCIENCE, 2019, 65 (05) :2142-2160
[2]   Duality Approaches to Economic Lot-Sizing Games [J].
Chen, Xin ;
Zhang, Jiawei .
PRODUCTION AND OPERATIONS MANAGEMENT, 2016, 25 (07) :1203-1215
[3]   On cooperative games with large monotonic core [J].
Getan, Jesus ;
Montes, Jesus .
TOP, 2010, 18 (02) :493-508
[4]   A primal-dual algorithm for computing a cost allocation in the core of economic lot-sizing games [J].
Gopaladesikan, Mohan ;
Uhan, Nelson A. ;
Zou, Jikai .
OPERATIONS RESEARCH LETTERS, 2012, 40 (06) :453-458
[5]   Monotonic stable solutions for minimum coloring games [J].
Hamers, H. ;
Miquel, S. ;
Norde, H. .
MATHEMATICAL PROGRAMMING, 2014, 145 (1-2) :509-529
[6]  
Sprumont Y., 1990, Games Econ Behav, V2, P378, DOI [10.1016/0899-8256(90)90006-G, DOI 10.1016/0899-8256(90)90006-G]
[7]   Economic lot-sizing games [J].
van den Heuvel, Wilco ;
Borm, Peter ;
Hamers, Herbert .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 176 (02) :1117-1130
[8]   DYNAMIC VERSION OF THE ECONOMIC LOT SIZE MODEL [J].
WAGNER, HM ;
WHITIN, TM .
MANAGEMENT SCIENCE, 1958, 5 (01) :89-96
[9]   On the population monotonicity of independent set games [J].
Wang, Libing ;
Xiao, Han ;
Du, Donglei ;
Xu, Dachuan .
OPERATIONS RESEARCH LETTERS, 2022, 50 (05) :470-474
[10]   Population monotonic allocation schemes for vertex cover games [J].
Xiao, Han ;
Fang, Qizhi ;
Du, Ding-Zhu .
THEORETICAL COMPUTER SCIENCE, 2020, 842 :41-49