Computation offloading in blockchain-enabled MCS systems: A scalable deep reinforcement learning approach

被引:14
|
作者
Chen, Zheyi [1 ,2 ,3 ]
Zhang, Junjie [1 ,2 ,3 ]
Huang, Zhiqin [1 ,2 ,3 ]
Wang, Pengfei [1 ,2 ,3 ]
Yu, Zhengxin [4 ]
Miao, Wang [5 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350116, Peoples R China
[2] Minist Educ, Engn Res Ctr Big Data Intelligence, Fuzhou 350002, Peoples R China
[3] Fuzhou Univ, Fujian Key Lab Network Comp & Intelligent Informat, Fuzhou 350116, Peoples R China
[4] Univ Lancaster, Sch Comp & Commun, Lancaster LA1 4YW, England
[5] Univ Plymouth, Sch Engn Comp & Math, Plymouth PL4 8AA, England
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2024年 / 153卷
基金
中国国家自然科学基金;
关键词
Mobile crowdsensing; Blockchain; Computation offloading; Deep reinforcement learning; Model scalability; EFFICIENT RESOURCE-ALLOCATION; MOBILE; PRIVACY; IOT;
D O I
10.1016/j.future.2023.12.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In Mobile Crowdsensing (MCS) systems, cloud service providers (CSPs) pay for and analyze the sensing data collected by mobile devices (MDs) to enhance the Quality-of-Service (QoS). Therefore, it is necessary to guarantee security when CSPs and users conduct transactions. Blockchain can secure transactions between two parties by using the Proof-of-Work (PoW) to confirm transactions and add new blocks to the chain. Nevertheless, the complex PoW seriously hinders applying Blockchain into MCS since MDs are equipped with limited resources. To address these challenges, we first design a new consortium blockchain framework for MCS, aiming to assure high reliability in complex environments, where a novel Credit-based Proof-of-Work (C-PoW) algorithm is developed to relieve the complexity of PoW while keeping the reliability of blockchain. Next, we propose a new scalable Deep Reinforcement learning based Computation Offloading (DRCO) method to handle the computation-intensive tasks of C-PoW. By combining Proximal Policy Optimization (PPO) and Differentiable Neural Computer (DNC), the DRCO can efficiently make the optimal/near-optimal offloading decisions for C-PoW tasks in blockchain-enabled MCS systems. Extensive experiments demonstrate that the DRCO reaches a lower total cost (weighted sum of latency and power consumption) than state-of-the-art methods under various scenarios.
引用
收藏
页码:301 / 311
页数:11
相关论文
共 50 条
  • [11] Blockchain-Enabled Deep Reinforcement Learning Approach for Performance Optimization on the Internet of Things
    Tanweer Alam
    Wireless Personal Communications, 2022, 126 : 995 - 1011
  • [13] Performance Optimization for Blockchain-Enabled Industrial Internet of Things (IIoT) Systems: A Deep Reinforcement Learning Approach
    Liu, Mengting
    Yu, F. Richard
    Teng, Yinglei
    Leung, Victor C. M.
    Song, Mei
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (06) : 3559 - 3570
  • [14] BeCome: Blockchain-Enabled Computation Offloading for IoT in Mobile Edge Computing
    Xu, Xiaolong
    Zhang, Xuyun
    Gao, Honghao
    Xue, Yuan
    Qi, Lianyong
    Dou, Wanchun
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (06) : 4187 - 4195
  • [15] Computation Offloading and User Association for Blockchain-enabled Heterogeneous Cellular Networks
    Zuo, Yiping
    Jin, Shi
    Zhang, Shengli
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [16] A Blockchain-Enabled Demand Management and Control Framework Driven by Deep Reinforcement Learning
    Ma, Rui
    Yi, Zhehan
    Xiang, Yingmeng
    Shi, Di
    Xu, Chunlei
    Wu, Haiwei
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (01) : 430 - 440
  • [17] Resource Allocation and Control Co-aware Smart Computation Offloading for Blockchain-Enabled IoT
    Chen S.-G.
    Wang Q.
    Zhang H.-J.
    Wang K.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (03): : 472 - 484
  • [18] Blockchain enabled trusted task offloading scheme for fog computing: A deep reinforcement learning approach
    Jain, Vibha
    Kumar, Bijendra
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2022, 33 (11)
  • [19] Deep Reinforcement Learning Based Computation Offloading in Fog Enabled Industrial Internet of Things
    Ren, Yijing
    Sun, Yaohua
    Peng, Mugen
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (07) : 4978 - 4987
  • [20] Blockchain-Enabled Data Collection and Sharing for Industrial IoT With Deep Reinforcement Learning
    Liu, Chi Harold
    Lin, Qiuxia
    Wen, Shilin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (06) : 3516 - 3526