Products of F* (G)-subnormal subgroups of finite groups

被引:0
作者
Murashka, Viachaslau, I [1 ]
机构
[1] Gomel State Univ, Francisk Skorina Fac Math & Technol Programming, Sovetskaya Str 104, Gomel 246019, BELARUS
关键词
Finite group; solubly saturated formation; F* (G)-subnormal subgroup; quasi-F-group; F-hypercenter; FITTING FORMATIONS; NILPOTENT;
D O I
10.1142/S0219498823501840
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subgroup H of a group G is called F* (G)-subnormal if it is subnormal in the product with the generalized Fitting subgroup F* (G) of G. All saturated formations F that contain every group G = AB where A and B are F* (G)-subnormal F-subgroups are described. Moreover, if such formation F is also normally hereditary, then every group G = AB where A and B are F* (G)-subnormal quasi-F-subgroups is a quasi-F-group. The connection of above-mentioned formations to the lattice formations, CWP-formations and formations with the Kegel property is found.
引用
收藏
页数:13
相关论文
共 27 条
[1]  
Amberg B., 1998, FUNDAM PRIKL MAT, V4, P1251
[2]   On formations with the Kegel property [J].
Ballester-Bolinches, A ;
Ezquerro, LM .
JOURNAL OF GROUP THEORY, 2005, 8 (05) :605-611
[3]   Nilpotent-like fitting formations of finite soluble groups [J].
Ballester-Bolinches, A ;
Pérez-Ramos, MD ;
Martínez-Pastor, A .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 62 (03) :427-433
[4]   On a theorem of Bryce and Cossey [J].
Ballester-Bolinches, A ;
Ezquerro, LM .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 57 (03) :455-460
[5]  
Ballester-Bolinches A., 2006, CLASSES FINITE GROUP, V584
[6]   ON THE LATTICE OF GAMMA-SUBNORMAL SUBGROUPS [J].
BALLESTERBOLINCHES, A ;
DOERK, K ;
PEREZRAMOS, MD .
JOURNAL OF ALGEBRA, 1992, 148 (01) :42-52
[7]   FITTING FORMATIONS OF FINITE SOLUBLE GROUPS [J].
BRYCE, RA ;
COSSEY, J .
MATHEMATISCHE ZEITSCHRIFT, 1972, 127 (03) :217-&
[8]  
Doerk Klaus., 1992, FINITE SOLUBLE GROUP, DOI DOI 10.1515/9783110870138
[9]   FRATTINI MODULE [J].
GRIESS, RL ;
SCHMID, P .
ARCHIV DER MATHEMATIK, 1978, 30 (03) :256-266
[10]  
Guo W., 2015, STRUCTURE THEORY CAN