Evaluation of Breast Cancer Tumor-Infiltrating Lymphocytes on Ultrasound Images Based on a Novel Multi-Cascade Residual U-Shaped Network

被引:2
作者
Wu, Ruichao [1 ]
Jia, Yingying [2 ,3 ,4 ]
Li, Nana [2 ,3 ,4 ]
Lu, Xiangyu [1 ]
Yao, Zihuan [1 ]
Ma, Yide [1 ]
Nie, Fang [2 ,3 ,4 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou, Peoples R China
[2] Lanzhou Univ, Hosp 2, Ultrasound Med Ctr, Lanzhou, Peoples R China
[3] Gansu Prov Med Engn Res Ctr Intelligence Ultrasoun, Lanzhou, Peoples R China
[4] Gansu Prov Clin Res Ctr Ultrasonog, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Tumor -infiltrating lymphocytes; Deep learning; Breast cancer; Ultrasound; FREE SURVIVAL; ASSOCIATION; RADIOMICS; FEATURES;
D O I
10.1016/j.ultrasmedbio.2023.08.003
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Objective: Breast cancer has become the leading cancer of the 21st century. Tumor-infiltrating lymphocytes (TILs) have emerged as effective biomarkers for predicting treatment response and prognosis in breast cancer. The work described here was aimed at designing a novel deep learning network to assess the levels of TILs in breast ultra-sound images.Methods: We propose the Multi-Cascade Residual U-Shaped Network (MCRUNet), which incorporates a gray feature enhancement (GFE) module for image reconstruction and normalization to achieve data synergy. Addition-ally, multiple residual U-shaped (RSU) modules are cascaded as the backbone network to maximize the fusion of global and local features, with a focus on the tumor's location and surrounding regions. The development of MCRUNet is based on data from two hospitals and uses a publicly available ultrasound data set for transfer learning.Results: MCRUNet exhibits excellent performance in assessing TILs levels, achieving an area under the receiver operating characteristic curve of 0.8931, an accuracy of 85.71%, a sensitivity of 83.33%, a specificity of 88.64% and an F1 score of 86.54% in the test group. It outperforms six state-of-the-art networks in terms of performance.Conclusion: The MCRUNet network based on breast ultrasound images of breast cancer patients holds promise for non-invasively predicting TILs levels and aiding personalized treatment decisions.
引用
收藏
页码:2398 / 2406
页数:9
相关论文
共 46 条
[1]   Dataset of breast ultrasound images [J].
Al-Dhabyani, Walid ;
Gomaa, Mohammed ;
Khaled, Hussien ;
Fahmy, Aly .
DATA IN BRIEF, 2020, 28
[2]   Application of Deep Learning in Breast Cancer Imaging [J].
Balkenende, Luuk ;
Teuwen, Jonas ;
Mann, Ritse M. .
SEMINARS IN NUCLEAR MEDICINE, 2022, 52 (05) :584-596
[3]   Evaluating Tumor-Infiltrating Lymphocytes in Breast Cancer Using Preoperative MRI-Based Radiomics [J].
Bian, Tiantian ;
Wu, Zengjie ;
Lin, Qing ;
Mao, Yan ;
Wang, Haibo ;
Chen, Jingjing ;
Chen, Qianqian ;
Fu, Guangming ;
Cui, Chunxiao ;
Su, Xiaohui .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 55 (03) :772-784
[4]   BI-RADS Ultrasound Lexicon Descriptors and Stromal Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer [J].
Candelaria, Rosalind P. ;
Spak, David A. ;
Rauch, Gaiane M. ;
Huo, Lei ;
Bassett, Roland L. ;
Santiago, Lumarie ;
Scoggins, Marion E. ;
Guirguis, Mary S. ;
Patel, Miral M. ;
Whitman, Gary J. ;
Moulder, Stacy L. ;
Thompson, Alastair M. ;
Ravenberg, Elizabeth E. ;
White, Jason B. ;
Abuhadra, Nour K. ;
Valero, Vicente ;
Litton, Jennifer ;
Adrada, Beatriz E. ;
Yang, Wei T. .
ACADEMIC RADIOLOGY, 2022, 29 :S35-S41
[5]   Usefulness of imaging findings in predicting tumor-infiltrating lymphocytes in patients with breast cancer [J].
Celebi, Filiz ;
Agacayak, Filiz ;
Ozturk, Alper ;
Ilgun, Serkan ;
Ucuncu, Muhammed ;
Iyigun, Zeynep Erdogan ;
Ordu, Cetin ;
Pilanci, Kezban Nur ;
Alco, Gul ;
Gultekin, Serap ;
Cindil, Emetullah ;
Soybir, Gursel ;
Aktepe, Fatma ;
Ozmen, Vahit .
EUROPEAN RADIOLOGY, 2020, 30 (04) :2049-2057
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]   Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy [J].
Denkert, Carsten ;
von Minckwitz, Gunter ;
Darb-Esfahani, Silvia ;
Lederer, Bianca ;
Heppner, Barbara I. ;
Weber, Karsten E. ;
Budczies, Jan ;
Huober, Jens ;
Klauschen, Frederick ;
Furlanetto, Jenny ;
Schmitt, Wolfgang D. ;
Blohmer, Jens-Uwe ;
Karn, Thomas ;
Pfitzner, Berit M. ;
Kuemmel, Sherko ;
Engels, Knut ;
Schneeweiss, Andreas ;
Hartmann, Arndt ;
Noske, Aurelia ;
Fasching, Peter A. ;
Jackisch, Christian ;
van Mackelenbergh, Marion ;
Sinn, Peter ;
Schem, Christian ;
Hanusch, Claus ;
Untch, Michael ;
Loibl, Sibylle .
LANCET ONCOLOGY, 2018, 19 (01) :40-50
[8]   Tumor-Infiltrating Lymphocytes and Response to Neoadjuvant Chemotherapy With or Without Carboplatin in Human Epidermal Growth Factor Receptor 2-Positive and Triple-Negative Primary Breast Cancers [J].
Denkert, Carsten ;
von Minckwitz, Gunter ;
Brase, Jan C. ;
Sinn, Bruno V. ;
Gade, Stephan ;
Kronenwett, Ralf ;
Pfitzner, Berit M. ;
Salat, Christoph ;
Loi, Sherene ;
Schmitt, Wolfgang D. ;
Schem, Christian ;
Fisch, Karin ;
Darb-Esfahani, Silvia ;
Mehta, Keyur ;
Sotiriou, Christos ;
Wienert, Stephan ;
Klare, Peter ;
Andre, Fabrice ;
Klauschen, Frederick ;
Blohmer, Jens-Uwe ;
Krappmann, Kristin ;
Schmidt, Marcus ;
Tesch, Hans ;
Kuemmel, Sherko ;
Sinn, Peter ;
Jackisch, Christian ;
Dietel, Manfred ;
Reimer, Toralf ;
Untch, Michael ;
Loibl, Sibylle .
JOURNAL OF CLINICAL ONCOLOGY, 2015, 33 (09) :983-991
[9]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[10]   Prognostic and Predictive Role of Tumor-Infiltrating Lymphocytes (TILs) in Ovarian Cancer [J].
Fanale, Daniele ;
Dimino, Alessandra ;
Pedone, Erika ;
Brando, Chiara ;
Corsini, Lidia Rita ;
Filorizzo, Clarissa ;
Fiorino, Alessia ;
Lisanti, Maria Chiara ;
Magrin, Luigi ;
Randazzo, Ugo ;
Russo, Tancredi Didier Bazan ;
Russo, Antonio ;
Bazan, Viviana .
CANCERS, 2022, 14 (18)