Minimizing the intra- pathologist disagreement for tumor bud detection on H&E images using weakly supervised learning

被引:0
作者
Tavolara, Thomas E. [1 ]
Chen, Wei [2 ]
Frankel, Wendy L. [2 ]
Gurcan, Metin N. [1 ]
Niazi, M. Khalid Khan [1 ]
机构
[1] Wake Forest Univ, Bowman Gray Sch Med, Ctr Biomed Informat, Winston Salem, NC 27101 USA
[2] Ohio State Univ, Dept Pathol, Wexner Med Ctr, Columbus, OH 43210 USA
来源
MEDICAL IMAGING 2023 | 2023年 / 12471卷
关键词
colorectal cancer; tumor budding; weak supervision; deep learning;
D O I
10.1117/12.2653887
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tumor budding (TB) is defined as a cluster of one to four tumor cells at the tumor invasive front. Though promising as a prognostic factor for colorectal cancer, its routine clinical use is hampered by high inter- and intra- observer disagreement on routine H&E staining. Pan-cytokeratin immunohistochemical staining increases agreement but is costly, non-routine, and may yield false tumor buds ( false positives). This makes the development of automatic algorithms to identify TB difficult. Therefore, we propose a weakly-supervised method that does not require strictly accurate tissue-level annotations and is resilient to false positives. Our database consists of 29 H&E whole slide images. TB and non-tumor ROIs were generated by cropping 512x512 regions around annotated tumor buds and within annotated non-tumor regions, respectively. Attention-based multiple instance learning was applied to identify ROIs containing tumor buds. This resulted in a precision of 0.9477 +/- 0.0516, recall of 0.9131 +/- 0.0568, and AUC of 0.9482 +/- 0.0679 on an external dataset. These results provide preliminary evidence for the feasibility of our method to identify tumor buds accurately.
引用
收藏
页数:7
相关论文
共 33 条
  • [1] Assessment of individual tumor buds using keratin immunohistochemistry: moderate interobserver agreement suggests a role for machine learning
    Bokhorst, J. M.
    Blank, A.
    Lugli, A.
    Zlobec, I.
    Dawson, H.
    Vieth, M.
    Rijstenberg, L. L.
    Brockmoeller, S.
    Urbanowicz, M.
    Flejou, J. F.
    Kirsch, R.
    Ciompi, F.
    van der Laak, J. A. W. M.
    Nagtegaal, I. D.
    [J]. MODERN PATHOLOGY, 2020, 33 (05) : 825 - 833
  • [2] Automatic Detection of Tumor Budding in Colorectal Carcinoma with Deep Learning
    Bokhorst, John-Melle
    Rijstenberg, Lucia
    Goudkade, Danny
    Nagtegaal, Iris
    van der Laak, Jeroen
    Ciompi, Francesco
    [J]. COMPUTATIONAL PATHOLOGY AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2018, 11039 : 130 - 138
  • [3] Automated tumour budding quantification by machine learning augments TNM staging in muscle-invasive bladder cancer prognosis
    Brieu, Nicolas
    Gavriel, Christos G.
    Nearchou, Ines P.
    Harrison, David J.
    Schmidt, Guenter
    Caie, Peter D.
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [4] Quantification of tumour budding, lymphatic vessel density and invasion through image analysis in colorectal cancer
    Caie, Peter D.
    Turnbull, Arran K.
    Farrington, Susan M.
    Oniscu, Anca
    Harrison, David J.
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2014, 12
  • [5] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Campanella, Gabriele
    Hanna, Matthew G.
    Geneslaw, Luke
    Miraflor, Allen
    Silva, Vitor Werneck Krauss
    Busam, Klaus J.
    Brogi, Edi
    Reuter, Victor E.
    Klimstra, David S.
    Fuchs, Thomas J.
    [J]. NATURE MEDICINE, 2019, 25 (08) : 1301 - +
  • [6] Spatial Architecture and Arrangement of Tumor-Infiltrating Lymphocytes for Predicting Likelihood of Recurrence in Early-Stage Non-Small Cell Lung Cancer
    Corredor, German
    Wang, Xiangxue
    Zhou, Yu
    Lu, Cheng
    Fu, Pingfu
    Syrigos, Konstantinos
    Rimm, David L.
    Yang, Michael
    Romero, Eduardo
    Schalper, Kurt A.
    Velcheti, Vamsidhar
    Madabhushi, Anant
    [J]. CLINICAL CANCER RESEARCH, 2019, 25 (05) : 1526 - 1534
  • [7] Tumor Budding in Colorectal Carcinoma Confirmation of Prognostic Significance and Histologic Cutoff in a Population-based Cohort
    Graham, Rondell P.
    Vierkant, Robert A.
    Tillmans, Lori S.
    Wang, Alice H.
    Laird, Peter W.
    Weisenberger, Daniel J.
    Lynch, Charles F.
    French, Amy J.
    Slager, Susan L.
    Raissian, Yassaman
    Garcia, Joaquin J.
    Kerr, Sarah E.
    Lee, Hee Eun
    Thibodeau, Stephen N.
    Cerhan, James R.
    Limburg, Paul J.
    Smyrk, Thomas C.
    [J]. AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 2015, 39 (10) : 1340 - 1346
  • [8] Ilse M, 2018, PR MACH LEARN RES, V80
  • [9] Digital image analysis of pan-cytokeratin stained tumor slides for evaluation of tumor budding in pT1/pT2 colorectal cancer: Results of a feasibility study
    Jepsen, Rikke Karlin
    Klarskov, Louise Laurberg
    Lippert, Michael Friis
    Novotny, Guy Wayne
    Hansen, Tine Plato
    Christensen, Ib Jade
    Hogdall, Estrid
    Riis, Lene Buhl
    [J]. PATHOLOGY RESEARCH AND PRACTICE, 2018, 214 (09) : 1273 - 1281
  • [10] Cytokeratin immunohistochemistry improves interobserver variability between unskilled pathologists in the evaluation of tumor budding in T1 colorectal cancer
    Kai, Keita
    Aishima, Shinichi
    Aoki, Shigehisa
    Takase, Yukari
    Uchihashi, Kazuyoshi
    Masuda, Masanori
    Nishijima-Matsunobu, Aki
    Yamamoto, Mihoko
    Ide, Kousuke
    Nakayama, Atsushi
    Yamasaki, Makiko
    Toda, Shuji
    [J]. PATHOLOGY INTERNATIONAL, 2016, 66 (02) : 75 - 82