An ICD-Associated DAMP Gene signature predicts survival and immunotherapy response of patients with lung adenocarcinoma

被引:9
作者
Wu, Yuxin [1 ]
Li, Kexin [1 ]
Liang, Shuang [1 ]
Lou, Xiaoying [1 ]
Li, Yiling [1 ]
Xu, Danfei [1 ]
Wu, Yue [1 ]
Wang, Yuan [1 ]
Cui, Wei [1 ]
机构
[1] Chinese Acad Med Sci, Peking Union Med Coll, Canc Hosp, Natl Canc Ctr,State Key Lab Mol Oncol,Natl Clin Re, Beijing 100021, Peoples R China
关键词
Lung adenocarcinoma; Immunogenic cell death; Damage-associated molecular patterns; Signature; Prognosis; Immunotherapy; CELL-DEATH; CANCER; THERAPY;
D O I
10.1186/s12931-023-02443-0
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
BackgroundWhile some lung adenocarcinoma (LUAD) patients benefit long-term from treatment with immune checkpoint inhibitors, the sad reality is that a considerable proportion of patients do not. The classification of the LUAD tumor microenvironment (TME) can be used to conceptually comprehend primary resistance mechanisms. In addition, the most recent research demonstrates that the release of damage-associated molecular pattern (DAMP) in TME by immunogenic cell death (ICD) may contribute to the adaptive immune response. Currently, however, there is no such comprehensive research on this topic in LUAD patients. Therefore, we set out to investigate how to reverse the poor infiltration characteristics of immune cells and boost antitumor immunity by identifying DAMP model.MethodsIn this study, ICD-related DAMP genes were selected to investigate their effects on the prognosis of LUAD. To create a risk signature using the TCGA-LUAD cohort, the univariate COX regression and the least absolute shrinkage and selection operator regression were carried out, and the results were verified in a GEO dataset. Subsequently, the multivariate COX regression was applied to establish a prognostic nomogram. And the ESTIMATE and ssGSEA algorithms were utilized to analyze immune activity and the TIDE algorithm was for responsiveness to immunotherapy. Moreover, clinical tissue samples were used to verify the differential expression of 9 DAMP genes in the signature.ResultsWe identified two distinct DAMP molecular subtypes, and there are remarkable differences in survival probability between the two subtypes, and patients with higher levels of DAMP-related genes are "hot tumors" with increased immune activity. In addition, 9 DAMP genes were selected as prognostic signature genes, and clinical outcomes and immunotherapy response were better for participants in the low-risk group. Importantly, according to the area under the curve (AUC) value in evaluating the efficacy of immunotherapy, this signature is superior to existing predictors, such as PD-L1 and TIDE.ConclusionsOur study suggests ICD plays an important part in modeling the TME of LUAD patients. And this signature could be utilized as a reliable predictor to estimate clinical outcomes and predict immunotherapy efficacy among LUAD patients.
引用
收藏
页数:16
相关论文
共 41 条
[1]   Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance [J].
Bagchi, Sreya ;
Yuan, Robert ;
Engleman, Edgar G. .
ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 16, 2021, 2021, 16 :223-249
[2]   The prognostic role of tissue TLR2 and TLR4 in colorectal cancer [J].
Beilmann-Lehtonen, Ines ;
Bockelman, Camilla ;
Mustonen, Harri ;
Koskensalo, Selja ;
Hagstrom, Jaana ;
Haglund, Caj .
VIRCHOWS ARCHIV, 2020, 477 (05) :705-715
[3]   Targeted therapy for non-small cell lung cancer: current standards and the promise of the future [J].
Chan, Bryan A. ;
Hughes, Brett G. M. .
TRANSLATIONAL LUNG CANCER RESEARCH, 2015, 4 (01) :36-54
[4]   The impact of the Cancer Genome Atlas on lung cancer [J].
Chang, Jeremy T. -H. ;
Lee, Yee Ming ;
Huang, R. Stephanie .
TRANSLATIONAL RESEARCH, 2015, 166 (06) :568-585
[5]   Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade [J].
Charoentong, Pornpimol ;
Finotello, Francesca ;
Angelova, Mihaela ;
Mayer, Clemens ;
Efremova, Mirjana ;
Rieder, Dietmar ;
Hackl, Hubert ;
Trajanoski, Zlatko .
CELL REPORTS, 2017, 18 (01) :248-262
[6]   Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing [J].
Cohen, Yael C. ;
Zada, Mor ;
Wang, Shuang-Yin ;
Bornstein, Chamutal ;
David, Eyal ;
Moshe, Adi ;
Li, Baoguo ;
Shlomi-Loubaton, Shir ;
Gatt, Moshe E. ;
Gur, Chamutal ;
Lavi, Noa ;
Ganzel, Chezi ;
Luttwak, Efrat ;
Chubar, Evgeni ;
Rouvio, Ory ;
Vaxman, Iuliana ;
Pasvolsky, Oren ;
Ballan, Mouna ;
Tadmor, Tamar ;
Nemets, Anatoly ;
Jarchowcky-Dolberg, Osnat ;
Shvetz, Olga ;
Laiba, Meirav ;
Shpilberg, Ofer ;
Dally, Najib ;
Avivi, Irit ;
Weiner, Assaf ;
Amit, Ido .
NATURE MEDICINE, 2021, 27 (03) :491-+
[7]   Immunotherapy in Non-Small Cell Lung Cancer: Facts and Hopes [J].
Doroshow, Deborah B. ;
Sanmamed, Miguel F. ;
Hastings, Katherine ;
Politi, Katerina ;
Rimm, David L. ;
Chen, Lieping ;
Melero, Ignacio ;
Schalper, Kurt A. ;
Herbst, Roy S. .
CLINICAL CANCER RESEARCH, 2019, 25 (15) :4592-4602
[8]   Consensus guidelines for the definition, detection and interpretation of immunogenic cell death [J].
Galluzzi, Lorenzo ;
Vitale, Ilio ;
Warren, Sarah ;
Adjemian, Sandy ;
Agostinis, Patrizia ;
Buque Martinez, Aitziber ;
Chan, Timothy A. ;
Coukos, George ;
Demaria, Sandra ;
Deutsch, Eric ;
Draganov, Dobrin ;
Edelson, Richard L. ;
Formenti, Silvia C. ;
Fucikova, Jitka ;
Gabriele, Lucia ;
Gaipl, Udo S. ;
Gameiro, Sofia R. ;
Garg, Abhishek D. ;
Golden, Encouse ;
Han, Jian ;
Harrington, Kevin J. ;
Hemminki, Akseli ;
Hodge, James W. ;
Hossain, Dewan Md Sakib ;
Illidge, Tim ;
Karin, Michael ;
Kaufman, Howard L. ;
Kepp, Oliver ;
Kroemer, Guido ;
Lasarte, Juan Jose ;
Loi, Sherene ;
Lotze, Michael T. ;
Manic, Gwenola ;
Merghoub, Taha ;
Melcher, Alan A. ;
Mossman, Karen L. ;
Prosper, Felipe ;
Rekdal, Oystein ;
Rescigno, Maria ;
Riganti, Chiara ;
Sistigu, Antonella ;
Smyth, Mark J. ;
Spisek, Radek ;
Stagg, John ;
Strauss, Bryan E. ;
Tang, Daolin ;
Tatsuno, Kazuki ;
van Gool, Stefaan W. ;
Vandenabeele, Peter ;
Yamazaki, Takahiro .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2020, 8 (01)
[9]   Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018 [J].
Galluzzi, Lorenzo ;
Vitale, Ilio ;
Aaronson, Stuart A. ;
Abrams, John M. ;
Adam, Dieter ;
Agostinis, Patrizia ;
Alnemri, Emad S. ;
Altucci, Lucia ;
Amelio, Ivano ;
Andrews, David W. ;
Annicchiarico-Petruzzelli, Margherita ;
Antonov, Alexey V. ;
Arama, Eli ;
Baehrecke, Eric H. ;
Barlev, Nickolai A. ;
Bazan, Nicolas G. ;
Bernassola, Francesca ;
Bertrand, Mathieu J. M. ;
Bianchi, Katiuscia ;
Blagosklonny, Mikhail V. ;
Blomgren, Klas ;
Borner, Christoph ;
Boya, Patricia ;
Brenner, Catherine ;
Campanella, Michelangelo ;
Candi, Eleonora ;
Carmona-Gutierrez, Didac ;
Cecconi, Francesco ;
Chan, Francis K. -M. ;
Chandel, Navdeep S. ;
Cheng, Emily H. ;
Chipuk, Jerry E. ;
Cidlowski, John A. ;
Ciechanover, Aaron ;
Cohen, Gerald M. ;
Conrad, Marcus ;
Cubillos-Ruiz, Juan R. ;
Czabotar, Peter E. ;
D'Angiolella, Vincenzo ;
Dawson, Ted M. ;
Dawson, Valina L. ;
De laurenzi, Vincenzo ;
De Maria, Ruggero ;
Debatin, Klaus-Michael ;
DeBerardinis, Ralph J. ;
Deshmukh, Mohanish ;
Di Daniele, Nicola ;
Di Virgilio, Francesco ;
Dixit, Vishva M. ;
Dixon, Scott J. .
CELL DEATH AND DIFFERENTIATION, 2018, 25 (03) :486-541
[10]   Danger signalling during cancer cell death: origins, plasticity and regulation [J].
Garg, A. D. ;
Martin, S. ;
Golab, J. ;
Agostinis, P. .
CELL DEATH AND DIFFERENTIATION, 2014, 21 (01) :26-38