On the Joint A-Numerical Radius of Operators and Related Inequalities

被引:4
作者
Altwaijry, Najla [1 ]
Dragomir, Silvestru Sever [2 ]
Feki, Kais [3 ,4 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[2] Victoria Univ, Coll Sport Hlth & Engn, Math, POB 14428, Melbourne, Vic 8001, Australia
[3] Univ Monastir, Fac Econ Sci & Management Mahdia, Mahdia 5111, Tunisia
[4] Univ Sfax, Fac Sci Sfax, Lab Phys Math & Applicat LR ES 22 13, Sfax 3018, Tunisia
关键词
positive operator; joint A-numerical radius; Euclidean operator A-seminorm; joint operator A-seminorm; RANGES;
D O I
10.3390/math11102293
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study p-tuples of bounded linear operators on a complex Hilbert space with adjoint operators defined with respect to a non-zero positive operator A. Our main objective is to investigate the joint A-numerical radius of the p-tuple.We established several upper bounds for it, some of which extend and improve upon a previous work of the second author. Additionally, we provide several sharp inequalities involving the classical A-numerical radius and the A-seminorm of semi-Hilbert space operators as applications of our results.
引用
收藏
页数:18
相关论文
共 31 条
[1]   A New Seminorm for d-Tuples of A-Bounded Operators and Their Applications [J].
Altwaijry, Najla ;
Feki, Kais ;
Minculete, Nicusor .
MATHEMATICS, 2023, 11 (03)
[2]   Partial isometries in semi-Hilbertian spaces [J].
Arias, M. Laura ;
Corach, Gustavo ;
Gonzalez, M. Celeste .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1460-1475
[3]  
Azizov TY., 1989, Linear operators in spaces with indefinite metric
[4]   Spectral analysis of bounded operators on semi-Hilbertian spaces [J].
Baklouti, Hamadi ;
Namouri, Sirine .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (01)
[5]   Joint numerical ranges of operators in semi-Hilbertian spaces [J].
Baklouti, Hamadi ;
Feki, Kais ;
Ahmed, Ould Ahmed Mahmoud Sid .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 555 :266-284
[6]  
Bellman R., 1944, Bulletin of the American Mathematical Society, V50, P517, DOI [DOI 10.1090/S0002-9904-1944-08180-9, 10.1090/S0002-9904-1944-08180-9]
[7]  
Bhunia P., 2022, LECT NUMERICAL RADIU
[8]  
Bhunia P, 2020, ELECTRON J LINEAR AL, V36
[9]   A general moment problem [J].
Boas, RP .
AMERICAN JOURNAL OF MATHEMATICS, 1941, 63 :361-370
[10]  
Bombieri E., 1971, ACTA ARITH, V18, P401, DOI [10.4064/aa-18-1-401-404, DOI 10.4064/AA-18-1-401-404]