Integrated and Bifunctional Bilayer 3D Printing Scaffold for Osteochondral Defect Repair

被引:32
作者
Li, Cairong [1 ,2 ]
Zhang, Wei [1 ,2 ]
Nie, Yangyi [1 ,2 ]
Jiang, Dongchun [1 ,2 ]
Jia, Jingyi [1 ,2 ]
Zhang, Wenjing [1 ,2 ]
Li, Long [1 ,2 ]
Yao, Zhenyu [1 ,2 ]
Qin, Ling [3 ,4 ]
Lai, Yuxiao [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Ctr Translat Med Res & Dev, Shenzhen 518055, Peoples R China
[2] Univ Chinese Acad Sci, Shenzhen 518055, Guangdong, Peoples R China
[3] Guangdong Engn Lab Biomat Addit Mfg, Shenzhen 518055, Guangdong, Peoples R China
[4] Chinese Univ Hong Kong, Dept Orthopaed & Traumatol, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
chondrogenesis; extracellular matrix; magnesium; osteochondral defects; osteogenesis; poly (dopamine); poly(epsilon-caprolactone); MECHANICAL-PROPERTIES; BONE; REGENERATION; CARTILAGE; POLY(L-LACTIDE);
D O I
10.1002/adfm.202214158
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bioinspired scaffolds with two distinct regions resembling stratified anatomical architecture provide potential strategies for osteochondral defect repair and are studied in preclinical animals. However, delamination of the two layers often causes tissue disjunction between the regenerated cartilage and subchondral bone, leading to few commercially available clinical applications. This study develops an integrated poly(epsilon-caprolactone) (PCL)-based scaffold for repairing osteochondral defects. An extracellular matrix (ECM)-incorporated 3D printing composite scaffold (ECM/PCL) coated with ECM hydrogel (E-co-E/PCL) is fabricated as the upper layer, and magnesium oxide nanoparticles coated with polydopamine (MgO@PDA)-incorporated composite scaffold (MD/PCL) is fabricated using 3D printing as the bottom layer. The physicochemical and mechanical properties of the bilayer scaffold meet the requirements in designing and fabricating the osteochondral scaffold, especially a strong interface possessed between the two layers. By in vitro study, the integrated scaffold stimulates proliferation, chondrogenic differentiation, and osteogenic differentiation of human bone mesenchymal stem cells. Moreover, the integrated bilayer scaffold exhibits well repair ability to facilitate simultaneous regeneration of cartilage and subchondral bone after implanting into the osteochondral defect in rats. In addition, cartilage "tidemarks " completely regenerated after 12 weeks of implantation of the bilayer scaffold, which indicates no tissue disjunctions formed between the regenerated cartilage and subchondral bone.
引用
收藏
页数:17
相关论文
共 50 条
[1]   Engineering of gradient osteochondral tissue: From nature to lab [J].
Ansari, Sana ;
Khorshidi, Sajedeh ;
Karkhaneh, Akbar .
ACTA BIOMATERIALIA, 2019, 87 :41-54
[2]   Biomaterials for articular cartilage tissue engineering: Learning from biology [J].
Armiento, A. R. ;
Stoddart, M. J. ;
Alini, M. ;
Eglin, D. .
ACTA BIOMATERIALIA, 2018, 65 :1-20
[3]   Efficacy of rhBMP-2 Loaded PCL/β-TCP/bdECM Scaffold Fabricated by 3D Printing Technology on Bone Regeneration [J].
Bae, Eun-Bin ;
Park, Keun-Ho ;
Shim, Jin-Hyung ;
Chung, Ho-Yun ;
Choi, Jae-Won ;
Lee, Jin-Ju ;
Kim, Chang-Hwan ;
Jeon, Ho-Jun ;
Kang, Seong-Soo ;
Huh, Jung-Bo .
BIOMED RESEARCH INTERNATIONAL, 2018, 2018
[4]   Versatile Surface Modification Using Polydopamine and Related Polycatecholamines: Chemistry, Structure, and Applications [J].
Barclay, Thomas G. ;
Hegab, Hanaa M. ;
Clarke, Stephen R. ;
Ginic-Markovic, Milena .
ADVANCED MATERIALS INTERFACES, 2017, 4 (19)
[5]   Biocompatible and functional inorganic magnesium ceramic particles for biomedical applications [J].
Bedair, Tarek M. ;
Heo, Yun ;
Ryu, Jungju ;
Bedair, Hanan M. ;
Park, Wooram ;
Han, Dong Keun .
BIOMATERIALS SCIENCE, 2021, 9 (06) :1903-1923
[6]   Fabrication and evaluation of combined 3D printed/pamidronate-layered double hydroxides enriched electrospun scaffolds for bone tissue engineering applications [J].
Belgheisi, Ghazal ;
Nazarpak, Masoumeh Haghbin ;
Solati-Hashjin, Mehran .
APPLIED CLAY SCIENCE, 2022, 225
[7]   Recent advance in surface modification for regulating cell adhesion and behaviors [J].
Cai, Shuxiang ;
Wu, Chuanxiang ;
Yang, Wenguang ;
Liang, Wenfeng ;
Yu, Haibo ;
Liu, Lianqing .
NANOTECHNOLOGY REVIEWS, 2020, 9 (01) :971-989
[8]   3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction [J].
Chen, Lei ;
Deng, Cuijun ;
Li, Jiayi ;
Yao, Qingqiang ;
Chang, Jiang ;
Wang, Liming ;
Wu, Chengtie .
BIOMATERIALS, 2019, 196 :138-150
[9]   Surface modification of the biodegradable cardiovascular stent material Mg-Zn-Y-Nd alloy via conjugating REDV peptide for better endothelialization [J].
Chen, Li ;
Li, Jingan ;
Wang, Shuo ;
Zhu, Shijie ;
Zhu, Chao ;
Zheng, Boyuan ;
Yang, Ge ;
Guan, Shaokang .
JOURNAL OF MATERIALS RESEARCH, 2018, 33 (23) :4123-4133
[10]   High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF [J].
Cheng, Pengfei ;
Han, Pei ;
Zhao, Changli ;
Zhang, Shaoxiang ;
Wu, Hongliu ;
Ni, Jiahua ;
Hou, Peng ;
Zhang, Yuanzhuang ;
Liu, Jingyi ;
Xu, Haidong ;
Liu, Shen ;
Zhang, Xiaonong ;
Zheng, Yufeng ;
Chai, Yimin .
BIOMATERIALS, 2016, 81 :14-26