Bio-upcycling of even and uneven medium-chain-length diols and dicarboxylates to polyhydroxyalkanoates using engineered Pseudomonas putida

被引:4
作者
Ackermann, Yannic S. [1 ]
de Witt, Jan [1 ]
Mezzina, Mariela P. [2 ]
Schroth, Christoph [1 ]
Polen, Tino [1 ]
Nikel, Pablo I. [2 ]
Wynands, Benedikt [1 ]
Wierckx, Nick [1 ]
机构
[1] Forschungszentrum Julich, Inst Bio & Geosci IBG 1 Biotechnol, Julich, Germany
[2] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, Lyngby, Denmark
关键词
Pseudomonas putida; Metabolic engineering; Dicarboxylates; Diols; Bio-upcycling; Polyhydroxyalkanoates; POLYETHYLENE; METABOLISM; BACTERIA; WASTE;
D O I
10.1186/s12934-024-02310-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Bio-upcycling of plastics is an emerging alternative process that focuses on extracting value from a wide range of plastic waste streams. Such streams are typically too contaminated to be effectively processed using traditional recycling technologies. Medium-chain-length (mcl) diols and dicarboxylates (DCA) are major products of chemically or enzymatically depolymerized plastics, such as polyesters or polyethers. In this study, we enabled the efficient metabolism of mcl-diols and -DCA in engineered Pseudomonas putida as a prerequisite for subsequent bio-upcycling. We identified the transcriptional regulator GcdR as target for enabling metabolism of uneven mcl-DCA such as pimelate, and uncovered amino acid substitutions that lead to an increased coupling between the heterologous beta-oxidation of mcl-DCA and the native degradation of short-chain-length DCA. Adaptive laboratory evolution and subsequent reverse engineering unravelled two distinct pathways for mcl-diol metabolism in P. putida, namely via the hydroxy acid and subsequent native beta-oxidation or via full oxidation to the dicarboxylic acid that is further metabolized by heterologous beta-oxidation. Furthermore, we demonstrated the production of polyhydroxyalkanoates from mcl-diols and -DCA by a single strain combining all required metabolic features. Overall, this study provides a powerful platform strain for the bio-upcycling of complex plastic hydrolysates to polyhydroxyalkanoates and leads the path for future yield optimizations.
引用
收藏
页数:15
相关论文
共 45 条
[1]   Engineering adipic acid metabolism in Pseudomonas putida [J].
Ackermann, Yannic S. ;
Li, Wing-Jin ;
de Hipt, Leonie Op ;
Niehoff, Paul-Joachim ;
Casey, William ;
Polen, Tino ;
Kobbing, Sebastian ;
Ballerstedt, Hendrik ;
Wynands, Benedikt ;
O'Connor, Kevin ;
Blank, Lars M. ;
Wierckx, Nick .
METABOLIC ENGINEERING, 2021, 67 :29-40
[2]   Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes [J].
Benedetti, Ilaria ;
de Lorenzo, Victor ;
Nikel, Pablo I. .
METABOLIC ENGINEERING, 2016, 33 :109-118
[3]   Towards robust Pseudomonas cell factories to harbour novel biosynthetic pathways [J].
Bitzenhofer, Nora Lisa ;
Kruse, Luzie ;
Thies, Stephan ;
Wynands, Benedikt ;
Lechtenberg, Thorsten ;
Roenitz, Jakob ;
Kozaeva, Ekaterina ;
Wirth, Nicolas Thilo ;
Eberlein, Christian ;
Jaeger, Karl-Erich ;
Nikel, Pablo Ivan ;
Heipieper, Hermann J. ;
Wierckx, Nick ;
Loeschcke, Anita .
MICROBIAL CELL FACTORIES-BOOK, 2021, 65 (02) :319-336
[4]   From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications [J].
Blanco, Francisco G. ;
Hernandez, Natalia ;
Rivero-Buceta, Virginia ;
Maestro, Beatriz ;
Sanz, Jesus M. ;
Mato, Aranzazu ;
Hernandez-Arriaga, Ana M. ;
Auxiliadora Prieto, M. .
NANOMATERIALS, 2021, 11 (06)
[5]   Accurate DNA Assembly and Genome Engineering with Optimized Uracil Excision Cloning [J].
Cavaleiro, Ana Mafalda ;
Kim, Se Hyeuk ;
Seppala, Susanna ;
Nielsen, Morten T. ;
Norholm, Morten H. H. .
ACS SYNTHETIC BIOLOGY, 2015, 4 (09) :1042-1046
[6]   Alkaline polyethylene glycol-based method for direct PCR from bacteria, eukaryotic tissue samples, and whole blood [J].
Chomczynski, P ;
Rymaszewski, M .
BIOTECHNIQUES, 2006, 40 (04) :454-+
[7]  
Crane Jennine M, 2017, EcoSal Plus, V7, DOI 10.1128/ecosalplus.ESP-0002-2017
[8]   A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications [J].
Dalton, Bryan ;
Bhagabati, Purabi ;
De Micco, Jessica ;
Padamati, Ramesh Babu ;
O'Connor, Kevin .
CATALYSTS, 2022, 12 (03)
[9]   Characterization and engineering of branched short-chain dicarboxylate metabolism in Pseudomonas reveals resistance to fungal 2-hydroxyparaconate [J].
de Witt, Jan ;
Ernst, Philipp ;
Gaetegens, Jochem ;
Noack, Stephan ;
Hiller, Davina ;
Wynands, Benedikt ;
Wierckx, Nick .
METABOLIC ENGINEERING, 2023, 75 :205-216
[10]   A Post-translational Metabolic Switch Enables Complete Decoupling of Bacterial Growth from Biopolymer Production in Engineered Escherichia coli [J].
Durante-Rodriguez, Gonzalo ;
de Lorenzo, Victor ;
Nikel, Pablo I. .
ACS SYNTHETIC BIOLOGY, 2018, 7 (11) :2686-2697