Privacy-Preserving Bloom Filter-Based Keyword Search Over Large Encrypted Cloud Data

被引:9
作者
Liang, Yanrong [1 ]
Ma, Jianfeng [1 ]
Miao, Yinbin [1 ]
Kuang, Da [1 ]
Meng, Xiangdong [2 ]
Deng, Robert H. [3 ]
机构
[1] Xidian Univ, Sch Cyber Engn, Xian 710071, Peoples R China
[2] Henan Key Lab Network Cryptog Technol, Zhengzhou 450001, Peoples R China
[3] Singapore Management Univ, Sch Informat Syst, Singapore 188065, Singapore
基金
中国国家自然科学基金;
关键词
Keyword search; Encryption; Cryptography; Servers; Indexes; Security; Privacy; Searchable symmetric encryption; bloom filter-based keyword search; circular shift and coalesce-bloom filter; symmetric-key hidden vector encryption; SECURE;
D O I
10.1109/TC.2023.3285103
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
To achieve the search over encrypted data in cloud server, Searchable Encryption (SE) has attracted extensive attention from both academic and industrial fields. The existing Bloom filter-based SE schemes can achieve similarity search, but will generally incur high false positive rates, and even leak the privacy of values in Bloom filters (BF). To solve the above problems, we first propose a basic Privacy-preserving Bloom filter-based Keyword Search scheme using the Circular Shift and Coalesce-Bloom Filter (CSC-BF) and Symmetric-key Hidden Vector Encryption (SHVE) technology (namely PBKS), which can achieve effective search while protecting the values in BFs. Then, we design a new index structure T-CSCBF utilizing the Twin Bloom Filter (TBF) technology. Based on this, we propose an improved scheme PBKS+, which assigns a unique inclusion identifier to each position in each BF with privacy protection. Formal security analysis proves that our schemes are secure against Indistinguishability under Selective Chosen-Plaintext Attack (IND-SCPA), and extensive experiments using real-world datasets demonstrate that our schemes are feasible in practice.
引用
收藏
页码:3086 / 3098
页数:13
相关论文
共 31 条
[1]   Ultrafast search of all deposited bacterial and viral genomic data [J].
Bradley, Phelim ;
den Bakker, Henk C. ;
Rocha, Eduardo P. C. ;
McVean, Gil ;
Iqbal, Zamin .
NATURE BIOTECHNOLOGY, 2019, 37 (02) :152-+
[2]   Privacy Preserving Searchable Encryption with Fine-Grained Access Control [J].
Chaudhari, Payal ;
Das, Manik Lal .
IEEE TRANSACTIONS ON CLOUD COMPUTING, 2021, 9 (02) :753-762
[3]   EliMFS: Achieving Efficient, Leakage-Resilient, and Multi-Keyword Fuzzy Search on Encrypted Cloud Data [J].
Chen, Jing ;
He, Kun ;
Deng, Lan ;
Yuan, Quan ;
Du, Ruiying ;
Xiang, Yang ;
Wu, Jie .
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2020, 13 (06) :1072-1085
[4]  
Delfs H., 2007, Introduction to Cryptography: Principles and Applications, V2nd, P01, DOI [10.1007/3-540-49244-5_1, DOI 10.1007/3-540-49244-5_1]
[5]   Secure and Verifiable Keyword Search in Multiple Clouds [J].
Du, Jiang ;
Zhou, Junhai ;
Lin, Yaping ;
Zhang, Wei ;
Wei, Jianhao .
IEEE SYSTEMS JOURNAL, 2022, 16 (02) :2660-2671
[6]   BPMS: Blockchain-Based Privacy-Preserving Multi-Keyword Search in Multi-Owner Setting [J].
Gao, Sheng ;
Chen, Yuqi ;
Zhu, Jianming ;
Sui, Zhiyuan ;
Zhang, Rui ;
Ma, Xindi .
IEEE TRANSACTIONS ON CLOUD COMPUTING, 2023, 11 (03) :2260-2272
[7]   A Provably Secure and Efficient Range Query Scheme for Outsourced Encrypted Uncertain Data From Cloud-Based Internet of Things Systems [J].
Guo, Cheng ;
Su, Shenghao ;
Choo, Kim-Kwang Raymond ;
Tian, Pengxu ;
Tang, Xinyu .
IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (03) :1848-1860
[8]  
Gupta G, 2020, Arxiv, DOI arXiv:1910.02611
[9]   Privacy-Preserving Spatio-Temporal Keyword Search for Outsourced Location-Based Services [J].
Huang, Qinlong ;
Du, Jiabao ;
Yan, Guanyu ;
Yang, Yixian ;
Wei, Qinglin .
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2022, 15 (06) :3443-3456
[10]   Rphx: Result Pattern Hiding Conjunctive Query Over Private Compressed Index Using Intel SGX [J].
Jiang, Qin ;
Chang, Ee-Chien ;
Qi, Yong ;
Qi, Saiyu ;
Wu, Pengfei ;
Wang, Jianfeng .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 :1053-1068