A machine learning approach for multiple sclerosis diagnosis through Detecron Architecture

被引:1
作者
Dachraoui, Chaima [1 ]
Mouelhi, Aymen [2 ]
Mosbeh, Amine [3 ]
Sliti, Wassim [3 ]
Drissi, Cyrine [4 ]
Solaiman, Basel [5 ]
Labidi, Salam [1 ]
机构
[1] Univ Tunis El Manar, Higher Inst Med Technol Tunis, Res Lab Biophys & Med Technol LR13ES07, Tunis, Tunisia
[2] Univ Tunis, Natl Engn Sch Tunis, Lab Signal Image & Energy Mastery LR13ES03, Tunis, Tunisia
[3] Tunisia Mil Acad FondekJdid, Natl Sch Vet Med Sidi Thabet, Comp Sci Dept, Tunis, Tunisia
[4] Univ Tunis El Manar, Natl Inst Neurol Mongi Ben Hmida, Fac Med Tunisia, Tunis, Tunisia
[5] UBL, LaTIM UMR 1101, IMT Atlantique, Brest, France
关键词
MRI; 3D FLAIR; Multiple sclerosis; Diagnosis; Detecron-2; Detection; LESION SEGMENTATION; MRI;
D O I
10.1007/s11042-023-17055-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multiple sclerosis is a prevalent inflammatory disease affecting the central nervous system, leading to demyelination. Neuroradiology relies on accurate analysis of white matter lesions for diagnosis and prognosis. Automated methods for segmenting lesions in MRI scans offer crucial benefits of objectivity and efficiency, making them particularly valuable for analyzing large datasets. In contrast, manual delineation of MRI lesions is both time-consuming and prone to subjective bias. To overcome these issues, this paper proposes and develops an automated diagnosis approach using the Detecron-2 architecture. The method utilizes a fully modified Convolutional Neural Network on 3D FLAIR-weighted Magnetic Resonance Images.The approach is trained and validated on a dataset of 3000 images acquired from a Siemens 3Tesla MRI machine at the National Institute of Neurology Mongi Ben Hmida in Tunisia, using technical metrics. Comparisons with recent achievements demonstrate promising results. By addressing challenges in data augmentation and deep learning configurations, the proposed model effectively mitigates issues as overfitting. Notably, it achieves an impressive average detection accuracy of 87%, specificity (= 80,19%), precision (= 80%), sensitivity (= 76,1%) and intersection over Union (= 87,9%) when assessing healthy and pathological images. Additionally, the study recognizes the manual monitoring of multiple sclerosis plaques as a time-consuming and challenging task for clinicians. It highlights the importance of lesion segmentation for quantitative analysis of disease progression. As a second focus, the research aims to develop an automated segmentation to enhance the accuracy and efficiency of lesion identification, addressing the inconsistencies and variations observed among different observers.
引用
收藏
页码:42837 / 42859
页数:23
相关论文
共 37 条
[1]   Automatic and Robust Segmentation of Multiple Sclerosis Lesions with Convolutional Neural Networks [J].
Afzal, H. M. Rehan ;
Luo, Suhuai ;
Ramadan, Saadallah ;
Lechner-Scott, Jeannette ;
Amin, Mohammad Ruhul ;
Li, Jiaming ;
Afzal, M. Kamran .
CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (01) :977-991
[2]   Multiple Sclerosis Lesion Segmentation in Brain MRI Using Inception Modules Embedded in a Convolutional Neural Network [J].
Ansari, Shahab U. ;
Javed, Kamran ;
Qaisar, Saeed Mian ;
Jillani, Rashad ;
Haider, Usman .
JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
[3]   The Medical Segmentation Decathlon [J].
Antonelli, Michela ;
Reinke, Annika ;
Bakas, Spyridon ;
Farahani, Keyvan ;
Kopp-Schneider, Annette ;
Landman, Bennett A. ;
Litjens, Geert ;
Menze, Bjoern ;
Ronneberger, Olaf ;
Summers, Ronald M. ;
van Ginneken, Bram ;
Bilello, Michel ;
Bilic, Patrick ;
Christ, Patrick F. ;
Do, Richard K. G. ;
Gollub, Marc J. ;
Heckers, Stephan H. ;
Huisman, Henkjan ;
Jarnagin, William R. ;
McHugo, Maureen K. ;
Napel, Sandy ;
Pernicka, Jennifer S. Golia ;
Rhode, Kawal ;
Tobon-Gomez, Catalina ;
Vorontsov, Eugene ;
Meakin, James A. ;
Ourselin, Sebastien ;
Wiesenfarth, Manuel ;
Arbelaez, Pablo ;
Bae, Byeonguk ;
Chen, Sihong ;
Daza, Laura ;
Feng, Jianjiang ;
He, Baochun ;
Isensee, Fabian ;
Ji, Yuanfeng ;
Jia, Fucang ;
Kim, Ildoo ;
Maier-Hein, Klaus ;
Merhof, Dorit ;
Pai, Akshay ;
Park, Beomhee ;
Perslev, Mathias ;
Rezaiifar, Ramin ;
Rippel, Oliver ;
Sarasua, Ignacio ;
Shen, Wei ;
Son, Jaemin ;
Wachinger, Christian ;
Wang, Liansheng .
NATURE COMMUNICATIONS, 2022, 13 (01)
[4]   Technical note: Quantitative optimization of the FLAIR sequence in post mortem magnetic resonance imaging [J].
Berger, Celine ;
Birkl, Christoph ;
Bauer, Melanie ;
Scheurer, Eva ;
Lenz, Claudia .
FORENSIC SCIENCE INTERNATIONAL, 2022, 341
[5]   Magnetic resonance imaging criteria at onset to differentiate pediatric multiple sclerosis from acute disseminated encephalomyelitis: A nationwide cohort study [J].
Boesen, Magnus Spangsberg ;
Blinkenberg, Morten ;
Thygesen, Lau Caspar ;
Ilginiene, Jurgita ;
Langkilde, Annika Reynberg .
MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2022, 62
[6]   Iterative denoising accelerated 3D SPACE FLAIR sequence for brain MR imaging at 3T [J].
Eliezer, Michael ;
Vaussy, Alexis ;
Toupin, Solenn ;
Barbe, Remy ;
Kannengiesser, Stephan ;
Stemmer, Alto ;
Houdart, Emmanuel .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2022, 103 (01) :13-20
[7]   Present and future of the diagnostic work-up of multiple sclerosis: the imaging perspective [J].
Filippi, Massimo ;
Preziosa, Paolo ;
Arnold, Douglas L. ;
Barkhof, Frederik ;
Harrison, Daniel M. ;
Maggi, Pietro ;
Mainero, Caterina ;
Montalban, Xavier ;
Sechi, Elia ;
Weinshenker, Brian G. ;
Rocca, Maria A. .
JOURNAL OF NEUROLOGY, 2023, 270 (03) :1286-1299
[8]   Performance of the 2017 and 2010 Revised McDonald Criteria in Predicting MS Diagnosis After a Clinically Isolated Syndrome A MAGNIMS Study [J].
Filippi, Massimo ;
Preziosa, Paolo ;
Meani, Alessandro ;
Dalla Costa, Gloria ;
Mesaros, Sarlota ;
Drulovic, Jelena ;
Ivanovic, Jovana ;
Rovira, Alex ;
Tintore, Mar ;
Montalban, Xavier ;
Ciccarelli, Olga ;
Brownlee, Wallace ;
Miszkiel, Katherine ;
Enzinger, Christian ;
Khalil, Michael ;
Barkhof, Frederik ;
Strijbis, Eva M. M. ;
Frederiksen, Jette L. ;
Cramer, Stig P. ;
Fainardi, Enrico ;
Amato, Maria Pia ;
Gasperini, Claudio ;
Ruggieri, Serena ;
Martinelli, Vittorio ;
Comi, Giancarlo ;
Rocca, Maria A. .
NEUROLOGY, 2022, 98 (01) :E1-E14
[9]   Understanding Magnetic Resonance Imaging in Multiple Sclerosis (UMIMS): Development and Piloting of an Online Education Program About Magnetic Resonance Imaging for People With Multiple Sclerosis [J].
Freund, Magalie ;
Schiffmann, Insa ;
Rahn, Anne Christin ;
Chard, Declan ;
Lukas, Carsten ;
Scheiderbauer, Jutta ;
Sippel, Anna ;
Heesen, Christoph .
FRONTIERS IN NEUROLOGY, 2022, 13
[10]   Delve into Multiple Sclerosis (MS) lesion exploration: A modified attention U-Net for MS lesion segmentation in Brain MRI* [J].
Hashemi, Maryam ;
Akhbari, Mahsa ;
Jutten, Christian .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145