Wavelet energy-based adaptive retinex algorithm for low light mobile video enhancement

被引:0
作者
Vishalakshi, G. R. [1 ,2 ]
Shobharani, A. [1 ]
Hanumantharaju, M. C. [1 ]
机构
[1] Autonomous Inst Visvesvaraya Technol Univ, BMS Inst Technol & Management, Dept Elect & Commun Engn, Belagavi, India
[2] 146-A,6th Cross,1st Main,4th Phase SFS-407, Bengaluru 560064, Karnataka, India
关键词
Low light enhancement; mobile video; HSV colour space; adaptive multiscale retinex; wavelet energy; HISTOGRAM EQUALIZATION; IMAGE-ENHANCEMENT; FRAMEWORK; NETWORK;
D O I
10.1080/13682199.2023.2260663
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Our paper presents an adaptive multiscale retinex algorithm and a new wavelet energy metric to improve low-light video captured on mobile devices. Initially, we extract RGB frames from the video and convert them to hue-saturation-value (HSV) format, preserving the hue channel to prevent common RGB colour shifting issues. Saturation channel enhancement is achieved through histogram equalization (HE), extending the dynamic range. The adaptive retinex algorithm enhances the value channel, quantified by our new wavelet energy metric. Combining the modified value and saturation channels improves the contrast of the reconstructed image. As a final step, we transform the HSV video back to RGB and restore naturalness using a modified colour restoration technique. The proposed approach has been tested on over 300 images and videos. It is evident from the experimental results presented that the proposed method lowers noise and halo artifacts more effectively than existing methods.
引用
收藏
页码:1212 / 1242
页数:31
相关论文
共 72 条
[21]   A multiscale retinex for bridging the gap between color images and the human observation of scenes [J].
Jobson, DJ ;
Rahman, ZU ;
Woodell, GA .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (07) :965-976
[22]  
Kaur M., 2015, INT J ENG SCI, V5, P15
[23]   Contrast enhancement using brightness preserving bi-histogram equalization [J].
Kim, YT .
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 1997, 43 (01) :1-8
[24]   A variational framework for Retinex [J].
Kimmel, R ;
Elad, M ;
Shaked, D ;
Keshet, R ;
Sobel, I .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2003, 52 (01) :7-23
[25]   Visualization using rational morphology and magnitude-reduction (2) [J].
Kogan, R ;
Agaian, S ;
Lentz, KP .
VISUAL INFORMATION PROCESSING VII, 1998, 3387 :301-312
[26]   Visualization using rational morphology and zonal magnitude-reduction [J].
Kogan, R ;
Agaian, S ;
Lentz, KP .
NONLINEAR IMAGE PROCESSING IX, 1998, 3304 :153-163
[27]   RETINEX THEORY OF COLOR-VISION [J].
LAND, EH .
SCIENTIFIC AMERICAN, 1977, 237 (06) :108-&
[28]   Low-Light Image and Video Enhancement Using Deep Learning: A Survey [J].
Li, Chongyi ;
Guo, Chunle ;
Han, Linghao ;
Jiang, Jun ;
Cheng, Ming-Ming ;
Gu, Jinwei ;
Loy, Chen Change .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) :9396-9416
[29]   LightenNet: A Convolutional Neural Network for weakly illuminated image enhancement [J].
Li, Chongyi ;
Guo, Jichang ;
Porikli, Fatih ;
Pang, Yanwei .
PATTERN RECOGNITION LETTERS, 2018, 104 :15-22
[30]   Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model [J].
Li, Mading ;
Liu, Jiaying ;
Yang, Wenhan ;
Sun, Xiaoyan ;
Guo, Zongming .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (06) :2828-2841