On the Ion Flux From Beam Plasma to a Metal Target Irradiated by a Pulsed Electron Beam in the Forevacuum Pressure Range

被引:2
作者
Kazakov, Andrey V. [1 ]
Oks, Efim M. [1 ,2 ]
Panchenko, Nikolay A. [1 ]
机构
[1] Tomsk State Univ Control Syst & Radioelect, Dept Phys, Tomsk 634050, Russia
[2] Inst High Current Elect, Siberian Branch Russian Acad Sci, Tomsk 634055, Russia
关键词
Beam plasma; forevacuum pressure range; ion flux; low-temperature plasma; pulsed electron beam; DIAGNOSTICS; IONIZATION;
D O I
10.1109/TPS.2023.3304058
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We describe our investigations of the influence of electron beam parameters and working gas on the ion flux coming from the beam-produced plasma (beam plasma) to a target irradiated by a pulsed low-energy (up to 9 keV) electron beam in the forevacuum pressure range 4-15 Pa. The ion current from the beam-produced plasma to the target increases with increasing gas pressure and beam current, but decreases with increasing beam accelerating voltage. The use of gas with a greater ionization cross section leads to greater ion flux and correspondingly higher ion current to the irradiated target. The value of ion current to the target from the beam-plasma does not exceed 20% of the electron beam current. The observed dependencies of ion flux (current) to the target are due to changes in the beam-plasma density near the target. These results contribute to our understanding of the generation of beam-plasma by a pulsed electron beam and suggest the application of the ion flux from the beam-plasma to assist in electron-beam modification of dielectric materials in the forevacuum pressure region.
引用
收藏
页码:2245 / 2251
页数:7
相关论文
共 30 条
[1]   HIGH-ENERGY ELECTRON-DISTRIBUTION IN AN ELECTRON-BEAM-GENERATED ARGON PLASMA [J].
BRETAGNE, J ;
DELOUYA, G ;
GODART, J ;
PUECH, V .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1981, 14 (07) :1225-1239
[2]   Effect of collector potential on the beam-plasma formed by a forevacuum-pressure plasma-cathode electron beam source [J].
Burdovitsin, V. A. ;
Oks, E. M. ;
Zolotukhin, D. B. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (30)
[3]   Charge Compensation in an Insulated Target Bombarded by a Pulsed Electron Beam in the Forevacuum Pressure Range [J].
Burdovitsin, V. A. ;
Gul'kina, V. S. ;
Medovnik, A. V. ;
Oks, E. M. .
TECHNICAL PHYSICS, 2013, 58 (12) :1837-1839
[4]   Expansion of the working range of forevacuum plasma electron sources toward higher pressures [J].
Burdovitsin, V. A. ;
Goreev, A. K. ;
Klimov, A. S. ;
Zenin, A. A. ;
Oks, E. M. .
TECHNICAL PHYSICS, 2012, 57 (08) :1101-1105
[5]   Electron beam treatment of non-conducting materials by a fore-pump-pressure plasma-cathode electron beam source [J].
Burdovitsin, V. A. ;
Klimov, A. S. ;
Medovnik, A. V. ;
Oks, E. M. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2010, 19 (05)
[6]  
Chen F. F., 1981, LECT NOTES PRINCIPLE
[7]  
Chu P.K., 2013, LOW TEMPERATURE PLAS
[8]   Analysis of mechanisms of dielectric target charging under the effect of electron irradiation [J].
Evstaf'eva E.N. ;
Rau E.I. ;
Mileev V.N. ;
Novikov L.S. ;
Ditsman S.A. ;
Sennov R.A. .
Inorganic Materials: Applied Research, 2011, 2 (2) :106-113
[9]   Comparative analyses of plasma probe diagnostics techniques [J].
Godyak, V. A. ;
Alexandrovich, B. M. .
JOURNAL OF APPLIED PHYSICS, 2015, 118 (23)
[10]   Guiding effect of runaway electrons in atmospheric pressure nanosecond pulsed discharge: mode transition from diffuse discharge to streamer [J].
Huang, Bangdou ;
Zhang, Cheng ;
Ren, Chenhua ;
Shao, Tao .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2022, 31 (11)