Transcriptome and Metabolome Analyses Reveal Mechanisms Underlying the Response of Quinoa Seedlings to Nitrogen Fertilizers

被引:3
|
作者
Li, Hanxue [1 ]
Wang, Qianchao [1 ]
Huang, Tingzhi [1 ]
Liu, Junna [1 ]
Zhang, Ping [1 ]
Li, Li [1 ]
Xie, Heng [1 ]
Wang, Hongxin [1 ]
Liu, Chenghong [2 ]
Qin, Peng [1 ]
机构
[1] Yunnan Agr Univ, Coll Agron & Biotechnol, Kunming 650201, Peoples R China
[2] Shanghai Acad Agr Sci, Biotech Res Inst, Shanghai Key Lab Agr Genet & Breeding, Shanghai 201106, Peoples R China
关键词
quinoa seeding; nitrogen; metabolomics; transcriptomics; WILLD; GENES; GRAIN;
D O I
10.3390/ijms241411580
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Quinoa (Chenopodium quinoa Willd.) is a dicotyledonous annual amaranth herb that belongs to the family Chenopodiaceae. Quinoa can be cultivated across a wide range of climatic conditions. With regard to its cultivation, nitrogen-based fertilizers have a demonstrable effect on the growth and development of quinoa. How crops respond to the application of nitrogen affects grain quality and yield. Therefore, to explore the regulatory mechanisms that underlie the responses of quinoa seedlings to the application of nitrogen, we selected two varieties (i.e., Dianli-1299 and Dianli-71) of quinoa seedlings and analyzed them using metabolomic and transcriptomic techniques. Specifically, we studied the mechanisms underlying the responses of quinoa seedlings to varying concentrations of nitrogen by analyzing the dynamics of metabolites and genes involved in arginine biosynthesis; carbon fixation; and alanine, aspartate, and glutamate biosynthetic pathways. Overall, we found that differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) of quinoa are affected by the concentration of nitrogen. We detected 1057 metabolites, and 29,012 genes were annotated for the KEGG. We also found that 15 DEMs and 8 DEGs were key determinants of the differences observed in quinoa seedlings under different nitrogen concentrations. These contribute toward a deeper understanding of the metabolic processes of plants under different nitrogen treatments and provide a theoretical basis for improving the nitrogen use efficiency (NUE) of quinoa.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Transcriptome and Metabolome Analyses Reveal Complex Molecular Mechanisms Involved in the Salt Tolerance of Rice Induced by Exogenous Allantoin
    Wang, Juan
    Li, Yingbo
    Wang, Yinxiao
    Du, Fengping
    Zhang, Yue
    Yin, Ming
    Zhao, Xiuqin
    Xu, Jianlong
    Yang, Yongqing
    Wang, Wensheng
    Fu, Binying
    ANTIOXIDANTS, 2022, 11 (10)
  • [42] Comparative transcriptome and metabolome analyses provide new insights into the molecular mechanisms underlying taproot thickening in Panax notoginseng
    Li, Xue-Jiao
    Yang, Jian-Li
    Hao, Bing
    Lu, Ying-Chun
    Qian, Zhi-Long
    Li, Ying
    Ye, Shuang
    Tang, Jun-Rong
    Chen, Mo
    Long, Guang-Qiang
    Zhao, Yan
    Zhang, Guang-Hui
    Chen, Jun-Wen
    Fan, Wei
    Yang, Sheng-Chao
    BMC PLANT BIOLOGY, 2019, 19 (01)
  • [43] Comparative transcriptome and metabolome profiling reveal molecular mechanisms underlying OsDRAP1-mediated salt tolerance in rice
    Yinxiao Wang
    Liyu Huang
    Fengping Du
    Juan Wang
    Xiuqin Zhao
    Zhikang Li
    Wensheng Wang
    Jianlong Xu
    Binying Fu
    Scientific Reports, 11
  • [44] Comparative transcriptome and metabolome profiling reveal molecular mechanisms underlying OsDRAP1-mediated salt tolerance in rice
    Wang, Yinxiao
    Huang, Liyu
    Du, Fengping
    Wang, Juan
    Zhao, Xiuqin
    Li, Zhikang
    Wang, Wensheng
    Xu, Jianlong
    Fu, Binying
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [45] Integrated metabolome and transcriptome analyses reveal the molecular mechanism underlying dynamic metabolic processes during taproot development of Panax notoginseng
    Li, Xuejiao
    Zhao, Yan
    He, Shuilian
    Meng, Jing
    Lu, Yingchun
    Shi, Huineng
    Liu, Chunlan
    Hao, Bing
    Tang, Qingyan
    Zhang, Shuangyan
    Zhang, Guanghui
    Luo, Yu
    Yang, Shengchao
    Yang, Jianli
    Fan, Wei
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [46] Integrated metabolome and transcriptome analyses reveal the molecular mechanism underlying dynamic metabolic processes during taproot development of Panax notoginseng
    Xuejiao Li
    Yan Zhao
    Shuilian He
    Jing Meng
    Yingchun Lu
    Huineng Shi
    Chunlan Liu
    Bing Hao
    Qingyan Tang
    Shuangyan Zhang
    Guanghui Zhang
    Yu Luo
    Shengchao Yang
    Jianli Yang
    Wei Fan
    BMC Plant Biology, 24
  • [47] Transcriptome and metabolome analyses reveal improvement in blueberry fruit quality by interspecific grafting
    Bo Zhu
    Pei-Pei Guo
    Min Shen
    Yan Zhang
    Feng He
    Lu Yang
    Xuan Gao
    Yong Hu
    Jia-Xin Xiao
    Trees, 2024, 38 : 65 - 78
  • [48] Transcriptome and Metabolome Analyses Reveal That Nitrate Strongly Promotes Nitrogen and Carbon Metabolism in Soybean Roots, but Tends to Repress It in Nodules
    Ishikawa, Shinji
    Ono, Yuki
    Ohtake, Norikuni
    Sueyoshi, Kuni
    Tanabata, Sayuri
    Ohyama, Takuji
    PLANTS-BASEL, 2018, 7 (02):
  • [49] Comparative transcriptome and metabolome analyses reveal the methanol dissimilation pathway of Pichia pastoris
    Yu, Yi-Fan
    Yang, Jiashuo
    Zhao, Fengguang
    Lin, Ying
    Han, Shuangyan
    BMC GENOMICS, 2022, 23 (01)
  • [50] Transcriptome and metabolome analyses reveal the efficiency of in vitro regeneration by TDZ pretreatment in mulberry
    Luo, Yiwei
    Han, Yuanxiang
    Wei, Wuqi
    Han, Yue
    Yuan, Jianglian
    He, Ningjia
    SCIENTIA HORTICULTURAE, 2023, 310