Transcriptome and Metabolome Analyses Reveal Mechanisms Underlying the Response of Quinoa Seedlings to Nitrogen Fertilizers

被引:3
|
作者
Li, Hanxue [1 ]
Wang, Qianchao [1 ]
Huang, Tingzhi [1 ]
Liu, Junna [1 ]
Zhang, Ping [1 ]
Li, Li [1 ]
Xie, Heng [1 ]
Wang, Hongxin [1 ]
Liu, Chenghong [2 ]
Qin, Peng [1 ]
机构
[1] Yunnan Agr Univ, Coll Agron & Biotechnol, Kunming 650201, Peoples R China
[2] Shanghai Acad Agr Sci, Biotech Res Inst, Shanghai Key Lab Agr Genet & Breeding, Shanghai 201106, Peoples R China
关键词
quinoa seeding; nitrogen; metabolomics; transcriptomics; WILLD; GENES; GRAIN;
D O I
10.3390/ijms241411580
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Quinoa (Chenopodium quinoa Willd.) is a dicotyledonous annual amaranth herb that belongs to the family Chenopodiaceae. Quinoa can be cultivated across a wide range of climatic conditions. With regard to its cultivation, nitrogen-based fertilizers have a demonstrable effect on the growth and development of quinoa. How crops respond to the application of nitrogen affects grain quality and yield. Therefore, to explore the regulatory mechanisms that underlie the responses of quinoa seedlings to the application of nitrogen, we selected two varieties (i.e., Dianli-1299 and Dianli-71) of quinoa seedlings and analyzed them using metabolomic and transcriptomic techniques. Specifically, we studied the mechanisms underlying the responses of quinoa seedlings to varying concentrations of nitrogen by analyzing the dynamics of metabolites and genes involved in arginine biosynthesis; carbon fixation; and alanine, aspartate, and glutamate biosynthetic pathways. Overall, we found that differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) of quinoa are affected by the concentration of nitrogen. We detected 1057 metabolites, and 29,012 genes were annotated for the KEGG. We also found that 15 DEMs and 8 DEGs were key determinants of the differences observed in quinoa seedlings under different nitrogen concentrations. These contribute toward a deeper understanding of the metabolic processes of plants under different nitrogen treatments and provide a theoretical basis for improving the nitrogen use efficiency (NUE) of quinoa.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Transcriptome and Metabolome Analyses Revealed the Response Mechanism of Quinoa Seedlings to Different Phosphorus Stresses
    Wang, Qianchao
    Guo, Yirui
    Huang, Tingzhi
    Zhang, Xuesong
    Zhang, Ping
    Xie, Heng
    Liu, Junna
    Li, Li
    Kong, Zhiyou
    Qin, Peng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [2] Metabolome and transcriptome profiles in quinoa seedlings in response to potassium supply
    Huang, Tingzhi
    Zhang, Xuesong
    Wang, Qianchao
    Guo, Yirui
    Xie, Heng
    Li, Li
    Zhang, Ping
    Liu, Junna
    Qin, Peng
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [3] Metabolome and transcriptome profiles in quinoa seedlings in response to potassium supply
    Tingzhi Huang
    Xuesong Zhang
    Qianchao Wang
    Yirui Guo
    Heng Xie
    Li Li
    Ping Zhang
    Junna Liu
    Peng Qin
    BMC Plant Biology, 22
  • [4] Transcriptome and Metabolome Reveal the Molecular Mechanism of Barley Genotypes Underlying the Response to Low Nitrogen and Resupply
    Wang, Gang
    Wang, Juncheng
    Yao, Lirong
    Li, Baochun
    Ma, Xiaole
    Si, Erjing
    Yang, Ke
    Li, Chengdao
    Shang, Xunwu
    Meng, Yaxiong
    Wang, Huajun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (05)
  • [5] Metabolome and whole transcriptome analyses reveal the molecular mechanisms underlying terpenoids biosynthesis in Sapindus mukorossi fruits
    Xue, Ting
    Zheng, Xuehai
    Chen, Duo
    Zhang, Tianyu
    Chen, Youqiang
    Zhong, Quanlin
    Chen, Baibi
    Li, Baoyin
    INDUSTRIAL CROPS AND PRODUCTS, 2022, 181
  • [6] Transcriptome and Metabolome Analyses Reveal the Molecular Mechanisms of Albizia odoratissima's Response to Drought Stress
    Wei, Shuoxing
    Gao, Feng
    Wang, Zhihui
    Yin, Guoping
    Wen, Shizhi
    Ou, Hanbiao
    Liu, Zhiming
    PLANTS-BASEL, 2024, 13 (19):
  • [7] Comparative Transcriptome Analyses Reveal the Mechanisms Underlying Waterlogging Tolerance in Barley
    Zhu, Juan
    Yin, Haoxin
    Cao, Cong
    Sun, Chengqun
    Zhang, Mengna
    Hong, Yi
    Zhang, Yuhang
    Lv, Chao
    Guo, Baojian
    Wang, Feifei
    Xu, Rugen
    PLANTS-BASEL, 2025, 14 (01):
  • [8] Integrative analyses of the transcriptome and metabolome reveal comprehensive mechanisms of monolignol biosynthesis in response to bioclimatic factors in Magnolia officinalis
    Zhong, Mingxin
    Wang, Qian
    Tian, Hui
    Zhang, Bainian
    Xu, Zhuo
    Zhang, Yuanyuan
    Tan, Chengjia
    Hu, Xin
    Wang, Tao
    Feng, Daren
    Xi, Zhenpeng
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [9] Integrated analyses reveal the response of peanut to phosphorus deficiency on phenotype, transcriptome and metabolome
    Wu, Qi
    Yang, Liyu
    Liang, Haiyan
    Yin, Liang
    Chen, Dianxu
    Shen, Pu
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [10] Combining transcriptome and metabolome analyses to reveal the response of maize roots to Pb stress
    Zhang, Xiaoxiang
    Zhao, Bin
    Ma, Xingye
    Jin, Xining
    Chen, Shilin
    Wang, Pingxi
    Guan, Zhongrong
    Wu, Xiangyuan
    Zhang, Huaisheng
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 217