Bayesian Nonparametric Panel Markov-Switching GARCH Models

被引:2
作者
Casarin, Roberto [1 ]
Costantini, Mauro [2 ]
Osuntuyi, Anthony [1 ]
机构
[1] Ca Foscari Univ Venice, Venice, Italy
[2] Univ Laquila, Laquila, Italy
关键词
Bayesian nonparametrics; GARCH models; Gibbs sampling; Markov-switching; Time series; MIXTURE MODEL; INFERENCE; PREDICTIONS; VOLATILITY; LIKELIHOOD;
D O I
10.1080/07350015.2023.2166049
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article proposes Bayesian nonparametric inference for panel Markov-switching GARCH models. The model incorporates series-specific hidden Markov chain processes that drive the GARCH parameters. To cope with the high-dimensionality of the parameter space, the article assumes soft parameter pooling through a hierarchical prior distribution and introduces cross sectional clustering through a Bayesian nonparametric prior distribution. An MCMC posterior approximation algorithm is developed and its efficiency is studied in simulations under alternative settings. An empirical application to financial returns data in the United States is offered with a portfolio performance exercise based on forecasts. A comparison shows that the Bayesian nonparametric panel Markov-switching GARCH model provides good forecasting performances and economic gains in optimal asset allocation.
引用
收藏
页码:135 / 146
页数:12
相关论文
共 50 条
  • [21] Enhancing Portfolio Performance and VIX Futures Trading Timing with Markov-Switching GARCH Models
    De la Torre-Torres, Oscar V.
    Venegas-Martinez, Francisco
    Martinez-Torre-Enciso, Ma Isabel
    MATHEMATICS, 2021, 9 (02) : 1 - 23
  • [22] Local non-stationarity test in mean for Markov switching GARCH models: an approximate Bayesian approach
    Chen, Cathy W. S.
    Lee, Sangyeol
    Chen, Shu-Yu
    COMPUTATIONAL STATISTICS, 2016, 31 (01) : 1 - 24
  • [23] UNCERTAINTY THROUGH THE LENSES OF A MIXED-FREQUENCY BAYESIAN PANEL MARKOV-SWITCHING MODEL
    Casarin, Roberto
    Foroni, Claudia
    Marcellino, Massimiliano
    Ravazzolo, Francesco
    ANNALS OF APPLIED STATISTICS, 2018, 12 (04) : 2559 - 2586
  • [24] The functional central limit theorem for Markov-switching GARCH model
    Kwon, Dream
    Lee, Oesook
    ECONOMICS LETTERS, 2024, 238
  • [25] On Markov-switching periodic ARMA models
    Aliat, Billel
    Hamdi, Faycal
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (02) : 344 - 364
  • [26] Dealing with Markov-switching parameters in quantile regression models
    Kim, Yunmi
    Huo, Lijuan
    Kim, Tae-Hwan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (11) : 6773 - 6791
  • [27] Methods for measuring expectations and uncertainty in Markov-switching models
    Bianchi, Francesco
    JOURNAL OF ECONOMETRICS, 2016, 190 (01) : 79 - 99
  • [28] Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model
    Sampid, Marius Galabe
    Hasim, Haslifah M.
    Dai, Hongsheng
    PLOS ONE, 2018, 13 (06):
  • [29] Maximum Likelihood Estimation of the Markov-Switching GARCH Model Based on a General Collapsing Procedure
    Augustyniak, Maciej
    Boudreault, Mathieu
    Morales, Manuel
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2018, 20 (01) : 165 - 188
  • [30] Estimating the Markov-switching almost ideal demand systems: a Bayesian approach
    Kabe, Satoshi
    Kanazawa, Yuichiro
    EMPIRICAL ECONOMICS, 2014, 47 (04) : 1193 - 1220