Bayesian Nonparametric Panel Markov-Switching GARCH Models

被引:2
作者
Casarin, Roberto [1 ]
Costantini, Mauro [2 ]
Osuntuyi, Anthony [1 ]
机构
[1] Ca Foscari Univ Venice, Venice, Italy
[2] Univ Laquila, Laquila, Italy
关键词
Bayesian nonparametrics; GARCH models; Gibbs sampling; Markov-switching; Time series; MIXTURE MODEL; INFERENCE; PREDICTIONS; VOLATILITY; LIKELIHOOD;
D O I
10.1080/07350015.2023.2166049
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article proposes Bayesian nonparametric inference for panel Markov-switching GARCH models. The model incorporates series-specific hidden Markov chain processes that drive the GARCH parameters. To cope with the high-dimensionality of the parameter space, the article assumes soft parameter pooling through a hierarchical prior distribution and introduces cross sectional clustering through a Bayesian nonparametric prior distribution. An MCMC posterior approximation algorithm is developed and its efficiency is studied in simulations under alternative settings. An empirical application to financial returns data in the United States is offered with a portfolio performance exercise based on forecasts. A comparison shows that the Bayesian nonparametric panel Markov-switching GARCH model provides good forecasting performances and economic gains in optimal asset allocation.
引用
收藏
页码:135 / 146
页数:12
相关论文
共 50 条
[21]   Forecasting risk with Markov-switching GARCH models: A large-scale performance study [J].
Ardia, David ;
Bluteau, Keven ;
Boudt, Kris ;
Catania, Leopoldo .
INTERNATIONAL JOURNAL OF FORECASTING, 2018, 34 (04) :733-747
[22]   Local non-stationarity test in mean for Markov switching GARCH models: an approximate Bayesian approach [J].
Chen, Cathy W. S. ;
Lee, Sangyeol ;
Chen, Shu-Yu .
COMPUTATIONAL STATISTICS, 2016, 31 (01) :1-24
[23]   UNCERTAINTY THROUGH THE LENSES OF A MIXED-FREQUENCY BAYESIAN PANEL MARKOV-SWITCHING MODEL [J].
Casarin, Roberto ;
Foroni, Claudia ;
Marcellino, Massimiliano ;
Ravazzolo, Francesco .
ANNALS OF APPLIED STATISTICS, 2018, 12 (04) :2559-2586
[24]   The functional central limit theorem for Markov-switching GARCH model [J].
Kwon, Dream ;
Lee, Oesook .
ECONOMICS LETTERS, 2024, 238
[25]   On Markov-switching periodic ARMA models [J].
Aliat, Billel ;
Hamdi, Faycal .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (02) :344-364
[26]   Dealing with Markov-switching parameters in quantile regression models [J].
Kim, Yunmi ;
Huo, Lijuan ;
Kim, Tae-Hwan .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (11) :6773-6791
[27]   Methods for measuring expectations and uncertainty in Markov-switching models [J].
Bianchi, Francesco .
JOURNAL OF ECONOMETRICS, 2016, 190 (01) :79-99
[28]   Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model [J].
Sampid, Marius Galabe ;
Hasim, Haslifah M. ;
Dai, Hongsheng .
PLOS ONE, 2018, 13 (06)
[29]   Estimating the Markov-switching almost ideal demand systems: a Bayesian approach [J].
Kabe, Satoshi ;
Kanazawa, Yuichiro .
EMPIRICAL ECONOMICS, 2014, 47 (04) :1193-1220
[30]   Maximum Likelihood Estimation of the Markov-Switching GARCH Model Based on a General Collapsing Procedure [J].
Augustyniak, Maciej ;
Boudreault, Mathieu ;
Morales, Manuel .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2018, 20 (01) :165-188