Bayesian Nonparametric Panel Markov-Switching GARCH Models

被引:2
|
作者
Casarin, Roberto [1 ]
Costantini, Mauro [2 ]
Osuntuyi, Anthony [1 ]
机构
[1] Ca Foscari Univ Venice, Venice, Italy
[2] Univ Laquila, Laquila, Italy
关键词
Bayesian nonparametrics; GARCH models; Gibbs sampling; Markov-switching; Time series; MIXTURE MODEL; INFERENCE; PREDICTIONS; VOLATILITY; LIKELIHOOD;
D O I
10.1080/07350015.2023.2166049
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article proposes Bayesian nonparametric inference for panel Markov-switching GARCH models. The model incorporates series-specific hidden Markov chain processes that drive the GARCH parameters. To cope with the high-dimensionality of the parameter space, the article assumes soft parameter pooling through a hierarchical prior distribution and introduces cross sectional clustering through a Bayesian nonparametric prior distribution. An MCMC posterior approximation algorithm is developed and its efficiency is studied in simulations under alternative settings. An empirical application to financial returns data in the United States is offered with a portfolio performance exercise based on forecasts. A comparison shows that the Bayesian nonparametric panel Markov-switching GARCH model provides good forecasting performances and economic gains in optimal asset allocation.
引用
收藏
页码:135 / 146
页数:12
相关论文
共 50 条
  • [1] Markov-Switching GARCH Models in R: The MSGARCH Package
    Ardia, David
    Bluteau, Keven
    Boudt, Kris
    Catania, Leopoldo
    Trottier, Denis-Alexandre
    JOURNAL OF STATISTICAL SOFTWARE, 2019, 91 (04):
  • [2] On Markov-switching asymmetric log GARCH models: stationarity and estimation
    Ghezal, Ahmed
    Zemmouri, Imane
    FILOMAT, 2023, 37 (29) : 9879 - 9897
  • [3] Modelling volatility of cryptocurrencies using Markov-Switching GARCH models
    Caporale, Guglielmo Maria
    Zekokh, Timur
    RESEARCH IN INTERNATIONAL BUSINESS AND FINANCE, 2019, 48 : 143 - 155
  • [4] A Test of Using Markov-Switching GARCH Models in Oil and Natural Gas Trading
    De la Torre-Torres, Oscar V.
    Galeana-Figueroa, Evaristo
    Alvarez-Garcia, Jose
    ENERGIES, 2020, 13 (01)
  • [5] Maximum likelihood estimation of the Markov-switching GARCH model
    Augustyniak, Maciej
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 76 : 61 - 75
  • [6] Bayesian estimation of a Markov-switching threshold asymmetric GARCH model with Student-t innovations
    Ardia, David
    ECONOMETRICS JOURNAL, 2009, 12 (01): : 105 - 126
  • [7] Marginal likelihood for Markov-switching and change-point GARCH models
    Bauwens, Luc
    Dufays, Arnaud
    Rombouts, Jeroen V. K.
    JOURNAL OF ECONOMETRICS, 2014, 178 : 508 - 522
  • [8] Markov switching GARCH models for Bayesian hedging on energy futures markets
    Billio, Monica
    Casarin, Roberto
    Osuntuyi, Anthony
    ENERGY ECONOMICS, 2018, 70 : 545 - 562
  • [9] VaR of SSE returns Based on Bayesian Markov-Switching GARCH Approach
    Liao, Ruofan
    Boonyakunakorn, Petchaluck
    Sriboonchiita, Songsak
    PROCEEDINGS OF 2019 2ND INTERNATIONAL CONFERENCE ON BIG DATA TECHNOLOGIES (ICBDT 2019), 2019, : 339 - 343
  • [10] A Family of Markov-Switching Garch Processes
    Liu, Ji-Chun
    JOURNAL OF TIME SERIES ANALYSIS, 2012, 33 (06) : 892 - 902