Dynamic properties, Gaussian soliton and chaotic behaviors of general Degasperis-Procesi model

被引:22
作者
Kai, Yue [1 ]
Huang, Liuke [2 ,3 ,4 ]
机构
[1] Shanghai Univ Engn Sci, Ctr Intelligent Comp & Appl Stat, Sch Math Phys & Stat, Shanghai 201620, Peoples R China
[2] Tongji Univ, Key Lab Geotech & Underground Engn, Minist Educ, Shanghai 200092, Peoples R China
[3] Tongji Univ, Coll Civil Engn, Dept Geotech Engn, Shanghai 200092, Peoples R China
[4] Southwest Petr Univ, Sch Civil Engn & Geomat, Chengdu 610500, Sichuan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
General Degasperis-Procesi model; Gaussian soliton; Soliton stability; Modulation instability; Chaotic behavior; TRAVELING-WAVE SOLUTIONS; EQUATION; CLASSIFICATION;
D O I
10.1007/s11071-023-08290-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We establish the existences of periodic and soliton solutions to unperturbed general Degasperis-Procesi model, and corresponding solutions are shown to verify it. Especially, the Gaussian solitons are presented, which are barely seen in non-logarithmic equation. Moreover, the stability of soliton and modulation instability of the original equation are analyzed. Finally, by taking the external perturbed terms into consideration, the chaotic behaviors emerge. Corresponding largest Lyapunov exponents and phase portraits are presented to verify our conclusion graphically. The results such as Gaussian soliton solutions and chaotic behavior for the general Degasperis-Procesi model are initially discovered in the present paper.
引用
收藏
页码:8687 / 8700
页数:14
相关论文
共 31 条
  • [1] Interactions of rogue and solitary wave solutions to the (2+1)-D generalized Camassa-Holm-KP equation
    Abdeljabbar, Alrazi
    Hossen, M. Belal
    Roshid, Harun-Or
    Aldurayhim, Abdullah
    [J]. NONLINEAR DYNAMICS, 2022, 110 (04) : 3671 - 3683
  • [2] Axler S., 1997, LINEAR ALGEBRA DONE, DOI [10.1007/b97662, DOI 10.1007/B97662]
  • [3] GAUSSONS - SOLITONS OF THE LOGARITHMIC SCHRODINGER EQUATION
    BIALYNICKIBIRULA, I
    MYCIELSKI, J
    [J]. PHYSICA SCRIPTA, 1979, 20 (3-4): : 539 - 544
  • [4] AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS
    CAMASSA, R
    HOLM, DD
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (11) : 1661 - 1664
  • [5] Cao CW., 1984, J ZHENGZHOU U NAT SC, V2, P3
  • [6] Degasperis A., 1999, Symmetry and Perturbation Theory
  • [7] Influence of fourth-order dispersion on the Anderson localization
    dos Santos, Mateus C. P.
    Cardoso, Wesley B.
    [J]. NONLINEAR DYNAMICS, 2020, 101 (01) : 611 - 618
  • [8] Evolutionary behavior and novel collision of various wave solutions to (3+1)-dimensional generalized Camassa-Holm Kadomtsev-Petviashvili equation
    Feng, Yueyang
    Wang, Xiaomin
    Bilige, Sudao
    [J]. NONLINEAR DYNAMICS, 2021, 104 (04) : 4265 - 4275
  • [9] EFR-CSTP: Encryption for face recognition based on the chaos and semi-tensor product theory
    Gao, Suo
    Wu, Rui
    Wang, Xingyuan
    Liu, Jiafeng
    Li, Qi
    Tang, Xianglong
    [J]. INFORMATION SCIENCES, 2023, 621 : 766 - 781
  • [10] A 3D model encryption scheme based on a cascaded chaotic system
    Gao, Suo
    Wu, Rui
    Wang, Xingyuan
    Wang, Jin
    Li, Qi
    Wang, Chunpeng
    Tang, Xianglong
    [J]. SIGNAL PROCESSING, 2023, 202