Altering the Alkaline Metal Ions in Lepidocrocite-Type Layered Titanate for Sodium-Ion Batteries

被引:11
|
作者
Ali, Sajid [4 ]
Zhang, Yanyan [4 ]
Yang, Haoyuan [2 ]
Xu, Tingting [2 ]
Wang, Ye [2 ]
Cui, Junyan [2 ,4 ]
Elshof, Johan E. ten [1 ]
Shan, Chongxin [2 ]
Xu, Haiyan [3 ]
Yuan, Huiyu [4 ,5 ]
机构
[1] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
[2] Zhengzhou Univ, Sch Phys & Microelect, Key Lab Mat Phys, Minist Educ, Zhengzhou 450001, Peoples R China
[3] Zhengzhou Univ, Natl Supercomp Ctr Zhengzhou, Zhengzhou 450001, Henan, Peoples R China
[4] Zhengzhou Univ, Sch Mat Sci & Engn, Henan Key Lab High Temp Funct Mat, Zhengzhou 450001, Peoples R China
[5] Henan Inst Prod Qual Supervis & Inspection, Zhengzhou 450014, Peoples R China
基金
中国国家自然科学基金;
关键词
layered titanate; interlayer ions; interlayer distance; electrochemical performance; sodium-ion batteries; INTERCALATION ANODE; STORAGE; PERFORMANCE; EFFICIENT; NA2TI3O7; LITHIUM; TIO2; EXFOLIATION; MECHANISM; CAPACITY;
D O I
10.1021/acsami.2c15359
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The relatively large ionic radius of the Na ion is one of the primary reasons for the slow diffusion of Na ions compared to that of Li ions in de/intercalation processes in sodium-ion batteries (SIBs). Interlayer expansion of intercalation hosts is one of the effective techniques for facilitating Na-ion diffusion. For most ionic layered compounds, interlayer expansion relies on intercalation of guest ions. It is important to investigate the role of these ions for material development of SIBs. In this study, alkali-metal ions (Li+, Na+, K+, and Cs+) with different sizes were intercalated into lepidocrocite-type layered titanate by a simple ion-exchange technique to achieve interlayer modulation and those were then evaluated as anode materials for SIBs. By controlling the intercalated alkaline ion species, basal spacings of layered titanates (LTs) in the range of 0.68 to 0.85 nm were obtained. Interestingly, the largest interlayer spacing induced by the large size of Cs did not yield the best performance, while the Na intercalated layered titanate (Na-ILT) demonstrated a superior performance with a specific capacity of 153 mAh g(-1) at a current density of 0.1 A g(-1). We found that the phenomena can be explained by the high alkaline metal ion concentration and the efficient utilization of the active sites in Na-ILT. The detailed analysis indicates that large intercalating ions like Cs can hamper sodium-ion diffusion although the interlayer spacing is large. Our work suggests that adopting an appropriate interlayer ion species is key to developing highly efficient layered electrode materials for SIBs.
引用
收藏
页码:5028 / 5037
页数:10
相关论文
共 50 条
  • [1] Lepidocrocite Titanate-Graphene Composites for Sodium-Ion Batteries
    Barim, Gozde
    Yin, Wei
    Lin, Jason
    Song, Chengyu
    Kuykendall, Tevye R.
    Takeuchi, Kenneth J.
    Takeuchi, Esther S.
    Marschilok, Amy C.
    Doeff, Marca M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (45) : 19065 - 19073
  • [2] The chance of sodium titanate anode for the practical sodium-ion batteries
    Chen, Feng
    Li, Haoyu
    Qiao, Xianyan
    Wang, Ruoyang
    Hu, Changyan
    Chen, Ting
    Niu, Yifan
    Zhong, Benhe
    Wu, Zhenguo
    Guo, Xiaodong
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2024, 72 : 226 - 244
  • [3] Sodium Titanate for Sodium-Ion Batteries
    Libich, Jiri
    Maca, Josef
    Chekannikov, Andrey
    Vondrak, Jiri
    Cudek, Pavel
    Fibek, Michal
    Artner, Werner
    Fafilek, Guenter
    Sedlarikova, Marie
    SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY, 2019, 55 (01) : 109 - 113
  • [4] Sodium Titanate for Sodium-Ion Batteries
    Jiří Libich
    Josef Máca
    Andrey Chekannikov
    Jiří Vondrák
    Pavel Čudek
    Michal Fíbek
    Werner Artner
    Guenter Fafilek
    Marie Sedlaříková
    Surface Engineering and Applied Electrochemistry, 2019, 55 : 109 - 113
  • [5] Lepidocrocite-Type Layered Titanate Nanoparticles as Photocatalysts for H2 Production
    Saito, Kanji
    Inaguma, Kodai
    Ogawa, Makoto
    Pham Thi Ha
    Akiyama, Hayato
    Yamaguchi, Shuhei
    Minokoshi, Hiroyuki
    Ogasawara, Masataka
    Kato, Sumio
    ACS APPLIED NANO MATERIALS, 2022, : 9053 - 9062
  • [6] Sodium-ion batteries: Electrochemical properties of sodium titanate as negative electrode
    Libich, J.
    Minda, Jozef
    Sedlarikova, M.
    Vondrak, J.
    Maca, J.
    Fibek, M.
    Cudek, P.
    Chekannikov, A.
    Fafilek, G.
    JOURNAL OF ENERGY STORAGE, 2020, 27
  • [7] Enhanced thermal stability of the lepidocrocite-type titanates by intercalation of large alkaline ions
    Yang, Daoyuan
    Liu, Ruichao
    Liu, Hao
    Niu, Chunyao
    Cui, Junyan
    Gao, Jinxing
    Yuan, Huiyu
    Ma, Chengliang
    Jia, Quanli
    Zhang, Shaowei
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2021, 104 (03) : 1501 - 1512
  • [8] Electrochemical activity of 3d transition metal ions in polyanionic compounds for sodium-ion batteries
    Jiang, Shikang
    Wang, Hanlin
    Wang, Ting
    Zhou, Limin
    Xia, Hui
    Liu, Hua-Kun
    Dou, Shi-Xue
    Chen, Mingzhe
    BATTERY ENERGY, 2024, 3 (05):
  • [9] Experimental and Computational Investigation of Lepidocrocite Anodes for Sodium-Ion Batteries
    Markus, Isaac M.
    Engelke, Simon
    Shirpour, Mona
    Asta, Mark
    Doeff, Marca
    CHEMISTRY OF MATERIALS, 2016, 28 (12) : 4284 - 4291
  • [10] Electrochemistry of sodium titanate nanotubes as a negative electrode for sodium-ion batteries
    Leite, Marina M.
    Martins, Vitor L.
    Vichi, Flavio M.
    Torresi, Roberto M.
    ELECTROCHIMICA ACTA, 2020, 331 (331)