Computational aspects of orbifold equivalence

被引:0
|
作者
Kluck, Timo [1 ]
Camacho, Ana Ros [1 ]
机构
[1] Cardiff Univ, Sch Math, Senghenydd Rd, Cardiff CF24 4AG, Wales
来源
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY | 2024年 / 65卷 / 04期
基金
欧盟地平线“2020”;
关键词
81-08; 14B05; 13C14; MATRIX FACTORIZATIONS; CONSTRUCTION; CATEGORIES;
D O I
10.1007/s13366-024-00731-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the computational feasibility of an algorithm to prove orbifold equivalence between potentials describing Landau-Ginzburg models. Through a comparison with state-of-the-art results of Grobner basis computations in cryptology, we infer that the algorithm produces systems of equations that are beyond the limits of current technical capabilities. As such the algorithm needs to be augmented by 'inspired guesswork', and we provide examples of applying this approach.
引用
收藏
页码:809 / 826
页数:18
相关论文
共 50 条