Computational aspects of orbifold equivalence

被引:0
|
作者
Kluck, Timo [1 ]
Camacho, Ana Ros [1 ]
机构
[1] Cardiff Univ, Sch Math, Senghenydd Rd, Cardiff CF24 4AG, Wales
来源
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY | 2024年 / 65卷 / 04期
基金
欧盟地平线“2020”;
关键词
81-08; 14B05; 13C14; MATRIX FACTORIZATIONS; CONSTRUCTION; CATEGORIES;
D O I
10.1007/s13366-024-00731-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the computational feasibility of an algorithm to prove orbifold equivalence between potentials describing Landau-Ginzburg models. Through a comparison with state-of-the-art results of Grobner basis computations in cryptology, we infer that the algorithm produces systems of equations that are beyond the limits of current technical capabilities. As such the algorithm needs to be augmented by 'inspired guesswork', and we provide examples of applying this approach.
引用
收藏
页码:809 / 826
页数:18
相关论文
共 50 条
  • [1] McKay correspondence and orbifold equivalence
    Ionov, Andrei
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (05)
  • [2] On orbifold theory
    Dong, Chongying
    Ren, Li
    Xu, Feng
    ADVANCES IN MATHEMATICS, 2017, 321 : 1 - 30
  • [3] Estimation of VAR Models Computational Aspects
    Paolo Foschi
    Erricos J. Kontoghiorghes
    Computational Economics, 2003, 21 (1-2) : 3 - 22
  • [4] Orbifold equivalent potentials
    Carqueville, Nils
    Camacho, Ana Ros
    Runkel, Ingo
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (02) : 759 - 781
  • [5] Super orbifold theory
    Dong, Chongying
    Ren, Li
    Yang, Meiling
    ADVANCES IN MATHEMATICS, 2022, 405
  • [6] Hyperbolic Orbifold Tutte Embeddings
    Aigerman, Noam
    Lipman, Yaron
    ACM TRANSACTIONS ON GRAPHICS, 2016, 35 (06):
  • [7] MONOPOLE METRICS AND THE ORBIFOLD YAMABE PROBLEM
    Viaclovsky, Jeff A.
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (07) : 2503 - 2543
  • [8] A Review on Magnetic Gears: Topologies, Computational Models, and Design Aspects
    Wang, Yawei
    Filippini, Mattia
    Bianchi, Nicola
    Alotto, Piergiorgio
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2019, 55 (05) : 4557 - 4566
  • [9] Orbifold construction for topological field theories
    Schweigert, Christoph
    Woike, Lukas
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (03) : 1167 - 1192
  • [10] Orbifold semiorthogonal decompositions for Abelian varieties
    Lim, Bronson
    Rota, Franco
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2024, 18 (03) : 771 - 801