A fast non-parametric test of association for multiple traits

被引:3
|
作者
Garrido-Martin, Diego [1 ,2 ]
Calvo, Miquel [1 ]
Reverter, Ferran [1 ]
Guigo, Roderic [2 ,3 ]
机构
[1] Univ Barcelona UB, Dept Genet Microbiol & Stat, Av Diagonal 643, Barcelona 08028, Spain
[2] Barcelona Inst Sci & Technol, Ctr Genom Regulat CRG, Dr Aiguader 88, Barcelona 08003, Catalonia, Spain
[3] Univ Pompeu Fabra UPF, Barcelona, Catalonia, Spain
关键词
GENOME-WIDE ASSOCIATION; MULTIVARIATE-ANALYSIS; EFFICIENT; EXPRESSION; VARIANTS; INSIGHTS; DISEASE; OVARIAN; KLK5;
D O I
10.1186/s13059-023-03076-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The increasing availability of multidimensional phenotypic data in large cohorts of genotyped individuals requires efficient methods to identify genetic effects on multiple traits. Permutational multivariate analysis of variance (PERMANOVA) offers a powerful non-parametric approach. However, it relies on permutations to assess significance, which hinders the analysis of large datasets. Here, we derive the limiting null distribution of the PERMANOVA test statistic, providing a framework for the fast computation of asymptotic p values. Our asymptotic test presents controlled type I error and high power, often outperforming parametric approaches. We illustrate its applicability in the context of QTL mapping and GWAS.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] Jonckheere-Terpstra-Kendall-based non-parametric analysis of temporal differential gene expression
    Iuchi, Hitoshi
    Hamada, Michiaki
    NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (01)
  • [32] Identifying latent genetic interactions in genome-wide association studies using multiple traits
    Bass, Andrew J.
    Bian, Shijia
    Wingo, Aliza P.
    Wingo, Thomas S.
    Cutler, David J.
    Epstein, Michael P.
    GENOME MEDICINE, 2024, 16 (01):
  • [33] Association analysis of multiple traits by an approach of combining P values
    Chen, Lili
    Wang, Yong
    Zhou, Yajing
    JOURNAL OF GENETICS, 2018, 97 (01) : 79 - 85
  • [34] Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach
    Guo, Bin
    Wu, Baolin
    BIOINFORMATICS, 2019, 35 (13) : 2251 - 2257
  • [35] Non-Parametric Model-Based Estimation of the Effective Reproduction Number for SARS-CoV-2
    Hermes, Jacques
    Rosenblatt, Marcus
    Toensing, Christian
    Timmer, Jens
    ALGORITHMS, 2023, 16 (12)
  • [36] Bayesian non-parametric spatial prior for traffic crash risk mapping: A case study of Victoria, Australia
    Durand, J-B
    Forbes, F.
    Phan, C. D.
    Truong, L.
    Nguyen, H. D.
    Dama, F.
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2022, 64 (02) : 171 - 204
  • [37] A non-parametric approach for detecting gene-gene interactions associated with age-at-onset outcomes
    Li, Ming
    Gardiner, Joseph C.
    Breslau, Naomi
    Anthony, James C.
    Lu, Qing
    BMC GENETICS, 2014, 15
  • [38] FR-Match: robust matching of cell type clusters from single cell RNA sequencing data using the Friedman-Rafsky non-parametric test
    Zhang, Yun
    Aevermann, Brian D.
    Bakken, Trygve E.
    Miller, Jeremy A.
    Hodge, Rebecca D.
    Lein, Ed S.
    Scheuermann, Richard H.
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
  • [39] An improved robust association test for GWAS with multiple diseases
    Chen, Zhongxue
    Huang, Hanwen
    Ng, Hon Keung Tony
    STATISTICS & PROBABILITY LETTERS, 2014, 91 : 153 - 161
  • [40] A robust association test with multiple genetic variants and covariates
    Lee, Jen-Yu
    Shen, Pao-Sheng
    Cheng, Kuang-Fu
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2022, 21 (01)