共 50 条
A fast non-parametric test of association for multiple traits
被引:3
|作者:
Garrido-Martin, Diego
[1
,2
]
Calvo, Miquel
[1
]
Reverter, Ferran
[1
]
Guigo, Roderic
[2
,3
]
机构:
[1] Univ Barcelona UB, Dept Genet Microbiol & Stat, Av Diagonal 643, Barcelona 08028, Spain
[2] Barcelona Inst Sci & Technol, Ctr Genom Regulat CRG, Dr Aiguader 88, Barcelona 08003, Catalonia, Spain
[3] Univ Pompeu Fabra UPF, Barcelona, Catalonia, Spain
关键词:
GENOME-WIDE ASSOCIATION;
MULTIVARIATE-ANALYSIS;
EFFICIENT;
EXPRESSION;
VARIANTS;
INSIGHTS;
DISEASE;
OVARIAN;
KLK5;
D O I:
10.1186/s13059-023-03076-8
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
The increasing availability of multidimensional phenotypic data in large cohorts of genotyped individuals requires efficient methods to identify genetic effects on multiple traits. Permutational multivariate analysis of variance (PERMANOVA) offers a powerful non-parametric approach. However, it relies on permutations to assess significance, which hinders the analysis of large datasets. Here, we derive the limiting null distribution of the PERMANOVA test statistic, providing a framework for the fast computation of asymptotic p values. Our asymptotic test presents controlled type I error and high power, often outperforming parametric approaches. We illustrate its applicability in the context of QTL mapping and GWAS.
引用
收藏
页数:32
相关论文