A review on the modification mechanism of polymer on cement-based materials

被引:25
|
作者
Fan, Lidan [1 ,2 ]
Xu, Feng [1 ]
Wang, Shuren [1 ,2 ]
Yu, Yongqiang [1 ,2 ]
Zhang, Jiyun [1 ]
Guo, Jiaqi [1 ]
机构
[1] Henan Polytech Univ, Sch Civil Engn, Jiaozuo 454000, Henan, Peoples R China
[2] Henan Polytech Univ, Int Joint Res Lab Henan Prov Underground Space Dev, Jiaozuo 454000, Henan, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2023年 / 26卷
基金
中国国家自然科学基金;
关键词
Polymer modified cement-based; materials (PMCBMs); Modification mechanism; Polymer film; Functional group; Mechanical properties; BUTADIENE RUBBER LATEX; PORTLAND-CEMENT; EPOXY-RESIN; POLYCARBOXYLATE SUPERPLASTICIZERS; HYDRATION KINETICS; MODIFIED MORTARS; RHEOLOGICAL BEHAVIOR; POLYESTER FIBER; CARBON NANOTUBE; PORE STRUCTURE;
D O I
10.1016/j.jmrt.2023.08.291
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper conducted a comprehensive investigation into the role of polymers in cement -based materials. First, the modification mechanism of polymers on cement-based mate-rials based on physical and chemical effects are analyzed. The polymers are adsorbed on the surface of cement particles and cement hydration products through electrostatic attraction or hydrogen bonding, and filled in the pores or interfacial areas, and then transformed into a three-dimensional interpenetrating network structure, so as to densify the matrix materials. Then, the effects of polymers on the cement hydration reaction were introduced. It is mainly attributed to the adsorption behavior between polymer particles, and polymer films with cement causes them to cover the surfaces of cement particles and hydration products, which to some extent restricts the effective diffusion of various ions, such as Ca2+, AlO2-, SiO42-, SO42-, etc., as well as water in the system. And the complex-ation of functional groups in the polymer with Ca2+ hinders the nucleation and precipi-tation of calcium-containing hydration products, which in turn delays the hydration reaction process. In terms of strength, as it can be due to the agglomeration of polymer chains, increased porosity arised from generated CO2 gas and entrained air during prep-aration, the improvement effect of the polymers on cement-based material's compressive strength is not apparent or it shows a decreasing trend. As the role of "microfibers" and "bridge", many filamentous or network structures composed of flexible polymer mem-branes dramatically improve the flexural strength and toughness, and also enhance the bonding property of the matrix material. It is expected that the polymers containing designed specific structures according to target property will be applied in cement-based materials, and the universal guidelines and regulations will be provide for expanded application of polymer modified cement-based materials (PMCBMs) in the construction industry. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:5816 / 5837
页数:22
相关论文
共 50 条
  • [41] Reinforcing Mechanism of Graphene and Graphene Oxide Sheets on Cement-Based Materials
    Liu, Jintao
    Li, Qinghua
    Xu, Shilang
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2019, 31 (04)
  • [42] Effect of nano calcium carbonate on hydration characteristics and microstructure of cement-based materials: A review
    Fu, Qiang
    Zhang, Zhaorui
    Zhao, Xu
    Xu, Wenrui
    Niu, Ditao
    JOURNAL OF BUILDING ENGINEERING, 2022, 50
  • [43] Accelerators for normal concrete: A critical review on hydration, microstructure and properties of cement-based materials
    Wang, Yifei
    Lei, Lei
    Liu, Jianhui
    Ma, Yihan
    Liu, Yi
    Xiao, Zhiqiang
    Shi, Caijun
    CEMENT & CONCRETE COMPOSITES, 2022, 134
  • [44] Advances in understanding the effect of alkanolamine in cement-based materials
    Zhai, Qi
    Kurumisawa, Kiyofumi
    Moon, Juhyuk
    Hwang, In-Hee
    JOURNAL OF CLEANER PRODUCTION, 2024, 452
  • [45] Cement-based materials with graphene nanophase
    Dalla, P. T.
    Tragazikis, I. K.
    Exarchos, D. A.
    Dassios, K.
    Matikas, T. E.
    SMART MATERIALS AND NONDESTRUCTIVE EVALUATION FOR ENERGY SYSTEMS 2017, 2017, 10171
  • [46] Additive Manufacturing and Performance of Architectured Cement-Based Materials
    Moini, Mohamadreza
    Olek, Jan
    Youngblood, Jeffrey P.
    Magee, Bryan
    Zavattieri, Pablo D.
    ADVANCED MATERIALS, 2018, 30 (43)
  • [47] Mechanical properties and durability characteristics of polymer- and cement-based repair materials
    Al-Zahrani, MM
    Maslehuddin, M
    Al-Dulaijan, SU
    Ibrahim, M
    CEMENT & CONCRETE COMPOSITES, 2003, 25 (4-5): : 527 - 537
  • [48] Design methodology and mechanical properties of Superabsorbent Polymer (SAP) cement-based materials
    Sun, Beibei
    Wu, Hao
    Song, Weimin
    Li, Zhe
    Yu, Jia
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 204 : 440 - 449
  • [49] Water sensitivity of cement-based materials
    Zhou, Chunsheng
    Zhang, Xiaoyu
    Wang, Zhendi
    Yang, Zhenli
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2021, 104 (09) : 4279 - 4296
  • [50] Upcycling of construction spoil powder as partial cement replacement for sustainable cement-based materials: Properties and modification
    Wu, Huixia
    Yao, Pengpeng
    Yang, Dingyi
    Wang, Changqing
    Shen, Jiaxin
    Ma, Zhiming
    JOURNAL OF CLEANER PRODUCTION, 2022, 369