On the dynamics of a Leslie-Gower predator-prey ternary model with intraguild

被引:0
|
作者
Accarino, C. [1 ]
Capone, F. [1 ]
De Luca, R. [1 ]
Massa, G. [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, Via Cintia, I-80126 Naples, Italy
关键词
Leslie-Gower; Intraguild; Instability analysis; Nonlinear stability; STABILITY;
D O I
10.1007/s11587-023-00822-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a predator-prey model with intraguild predation describing the evolution between three interacting species-namely prey, mesopredator and top predator-is investigated, with the aim to model a complete food web. In particular, the longtime behaviour of the solutions is analysed, proving the existence of an absorbing set, and the linear and nonlinear stability analyses of the coexistence equilibrium are performed.
引用
收藏
页码:1099 / 1117
页数:19
相关论文
共 50 条
  • [21] Nonlinear Instability for a Leslie-Gower Predator-Prey Model with Cross Diffusion
    Zhang, Lina
    Fu, Shengmao
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [22] Fear Effect on a Modified Leslie-Gower Predator-Prey Model with Disease Transmission in Prey Population
    Purnomo, Anna Silvia
    Darti, Isnani
    Suryanto, Agus
    Kusumawinahyu, Wuryansari Muharini
    ENGINEERING LETTERS, 2023, 31 (02)
  • [23] Global Dynamics and Integrability of a Leslie-Gower Predator-Prey Model with Linear Functional Response and Generalist Predator
    Alvarez-Ramirez, Martha
    Garcia-Saldana, Johanna D.
    Medina, Mario
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (SUPPL 1)
  • [24] Dynamics of a ratio-dependent Leslie-Gower predator-prey model with Allee effect and fear effect
    Li, Yajing
    He, Mengxin
    Li, Zhong
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 201 : 417 - 439
  • [25] Propagation dynamics of the lattice Leslie-Gower predator-prey system in shifting habitats
    Yang, Fei-Ying
    Zhao, Qian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 544 (02)
  • [26] Stationary pattern and bifurcation of a Leslie-Gower predator-prey model with prey-taxis
    Yan, Xiao
    Maimaiti, Yimamu
    Yang, Wenbin
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 201 : 163 - 192
  • [27] Dynamics of a diffusive predator-prey model with modified Leslie-Gower schemes and additive Allee effect
    Yang, Liu
    Zhong, Shouming
    COMPUTATIONAL & APPLIED MATHEMATICS, 2015, 34 (02) : 671 - 690
  • [28] Dynamic analysis of a Leslie-Gower predator-prey model with the fear effect and nonlinear harvesting
    Wu, Hongqiuxue
    Li, Zhong
    He, Mengxin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (10) : 18592 - 18629
  • [29] Dynamics and bifurcations of a Filippov Leslie-Gower predator-prey model with group defense and time delay
    Jiao, Xubin
    Li, Xiaodi
    Yang, Youping
    CHAOS SOLITONS & FRACTALS, 2022, 162
  • [30] Hopf Bifurcation of a Modified Leslie-Gower Predator-Prey System
    Liu, Wei
    Fu, Chaojin
    COGNITIVE COMPUTATION, 2013, 5 (01) : 40 - 47