Implication of radiation on the thermal behavior of a partially wetted dovetail fin using an artificial neural network

被引:33
|
作者
Nimmy, P. [1 ]
Nagaraja, K. V. [1 ]
Srilatha, Pudhari [2 ]
Karthik, K. [3 ]
Sowmya, G. [4 ]
Kumar, R. S. Varun [1 ]
Khan, Umair [5 ,6 ,7 ]
Hussain, Syed Modassir [8 ]
Hendy, A. S. [9 ]
Ali, Mohamed R. [10 ,11 ]
机构
[1] Amrita Vishwa Vidyapeetham, Dept Math, Amrita Sch Engn, Bengaluru 560035, India
[2] Inst Aeronaut Engn, Dept Math, Hyderabad 500043, India
[3] Davangere Univ, Dept Studies & Res Math, Davangere 577002, Karnataka, India
[4] MS Ramaiah Inst Technol, Dept Math, Bangalore 560054, Karnataka, India
[5] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Bangi 43600, Selangor, Malaysia
[6] Sukkur IBA Univ, Dept Math & Social Sci, Sukkur 65200, Sindh, Pakistan
[7] Lebanese Amer Univ, Dept Comp Sci & Math, Byblos, Lebanon
[8] Islamic Univ Madinah, Fac Sci, Dept Math, Madinah 42351, Saudi Arabia
[9] Ural Fed Univ, Inst Nat Sci & Math, Dept Computat Math & Comp Sci, 19 Mira St, Ekaterinburg 620002, Russia
[10] Future Univ Egypt, Fac Engn & Technol, New Cairo 11835, Egypt
[11] Benha Univ, Benha Fac Engn, Basic Engn Sci Dept, Banha, Egypt
关键词
Fin; Dovetail fin; Partially wet fin; Artificial neural network; HEAT-TRANSFER; FLOW;
D O I
10.1016/j.csite.2023.103552
中图分类号
O414.1 [热力学];
学科分类号
摘要
The simultaneous convection-radiation heat transfer of a partially wetted dovetail extended surface is investigated in this study. Also, the temperature variance behavior of the dovetail extended surface (DES) is estimated through thermal models for partially wet and dry conditions using the neural network with the Levenberg-Marquardt scheme (NNLMS). The corresponding governing energy equations of a dovetail fin are presented as a set of ordinary differential equations (ODE), which are reduced to a non-dimensional form using dimensionless terms. Further, the resulting coupled conductive, convective, and radiative dimensionless ODEs are numerically solved utilizing the Runge-Kutta-Fehlberg fourth-fifth order (RKF-45) scheme. Using graphical illustrations, the resultant solutions are physically determined by considering the effects of various nondimensional variables on thermal behavior. From the outcomes, it is established that the thermal conductivity parameter enhances the thermal distribution in a partially wetted dovetail fin, and an upsurge in convection-conduction variable, temperature ratio parameter, radiation-conduction, and wet parameter diminishes the temperature profile of the considered extended surface. The modelled problem's NNLMS efficacy is demonstrated by achieving the best convergence and unique numerically assessed quantified results. The outcomes indicate that the strategy successfully resolves the partially wetted fin problem.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Analysis of thermal behavior of a porous fin fully wetted with nanofluids: convection and radiation
    Baslem, Abeer
    Sowmya, G.
    Gireesha, B. J.
    Prasannakumara, B. C.
    Rahimi-Gorji, Mohammad
    Nguyen Minh Hoang
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 307
  • [2] Evolutionary Computing for the Radiative-Convective Heat Transfer of a Wetted Wavy Fin Using a Genetic Algorithm-Based Neural Network
    Poornima, B. S.
    Sarris, Ioannis E.
    Chandan, K.
    Nagaraja, K. V.
    Kumar, R. S. Varun
    Ben Ahmed, Samia
    BIOMIMETICS, 2023, 8 (08)
  • [3] Predictive modeling through physics-informed neural networks for analyzing the thermal distribution in the partially wetted wavy fin
    Karthik, Kalachar
    Sowmya, Ganeshappa
    Sharma, Naman
    Kumar, Chandan
    Shashikala, Varun Kumar Ravikumar
    Shivaprakash, Siddesh Alur
    Muhammad, Taseer
    Gill, Harjot Singh
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2024, 104 (08):
  • [4] Artificial Neural Network Modeling for Predicting the Transient Thermal Distribution in a Stretching/Shrinking Longitudinal Fin
    Kumar, R. S. Varun
    Sarris, I. E.
    Sowmya, G.
    Prasannakumara, B. C.
    Verma, Amit
    ASME JOURNAL OF HEAT AND MASS TRANSFER, 2023, 145 (08):
  • [5] Thermal analysis of natural convection in rectangular porous fin wetted with CNTs nanoparticles and thermal radiation
    Nagaraju, Tanuja Thimlapura
    Linganna, Kavitha
    Varma, Sibyala Vijaykumar
    Channaiah, Somashekar
    Kumar, Ravikumar Shashikala Varun
    Khan, Umair
    Muhammad, Taseer
    Abdou, Mohammed Modather Mohammed
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2024, 104 (08):
  • [6] Prediction of thermal conductivity of various nanofluids using artificial neural network
    Ahmadloo, Ebrahim
    Azizi, Sadra
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 74 : 69 - 75
  • [7] PREDICTION OF HOURLY SOLAR RADIATION USING AN ARTIFICIAL NEURAL NETWORK
    Solmaz, Ozgur
    Ozgoren, Muammer
    MENDEL 2011 - 17TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING, 2011, : 218 - 225
  • [8] Thermal process calculations using artificial neural network models
    Afaghi, M
    Ramaswamy, HS
    Prasher, SO
    FOOD RESEARCH INTERNATIONAL, 2001, 34 (01) : 55 - 65
  • [9] Modeling of thermal diffusivity of nanofluids using artificial neural network
    Yousefi, Fakhri
    Parsazadeh, Nadieh
    HIGH TEMPERATURES-HIGH PRESSURES, 2017, 46 (06) : 459 - 480
  • [10] Thermal performance of PBGA package using artificial neural network
    Mustain, HA
    Cheng, PM
    Seetharamu, KN
    Hassan, AY
    1999 INTERNATIONAL SYMPOSIUM ON MICROELECTRONICS, PROCEEDINGS, 1999, 3906 : 764 - 769