Inhibition of Ion Migration for Highly Efficient and Stable Perovskite Solar Cells

被引:62
|
作者
Zhong, Yang [1 ]
Yang, Jia [1 ]
Wang, Xueying [1 ]
Liu, Yikun [1 ]
Cai, Qianqian [1 ]
Tan, Licheng [1 ,4 ]
Chen, Yiwang [1 ,2 ,3 ,4 ]
机构
[1] Nanchang Univ, Inst Polymers & Energy Chem IPEC, Coll Chem & Chem Engn, 999 Xuefu Ave, Nanchang 330031, Peoples R China
[2] Jiangxi Normal Univ, Natl Engn Res Ctr Carbohydrate Synth, Key Lab Fluorine & Silicon Energy Mat & Chem, Minist Educ, 99 Ziyang Ave, Nanchang 330022, Peoples R China
[3] Gannan Normal Univ, Coll Chem & Chem Engn, Ganzhou 341000, Peoples R China
[4] Peking Univ, Yangtze Delta Inst Optoelect, Nantong 226010, Peoples R China
基金
中国国家自然科学基金;
关键词
device engineering; intrinsic stability; ion migration; optimization strategy; perovskite solar cells; LONG-TERM STABILITY; ORGANOMETAL TRIHALIDE PEROVSKITE; METHYLAMMONIUM LEAD IODIDE; INDUCED HALIDE SEGREGATION; OPERATIONAL STABILITY; SPIRO-OMETAD; PHASE SEGREGATION; THERMAL-STABILITY; MESOPOROUS TIO2; LIGHT;
D O I
10.1002/adma.202302552
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years, organic-inorganic halide perovskites are now emerging as the most attractive alternatives for next-generation photovoltaic devices, due to their excellent optoelectronic characteristics and low manufacturing cost. However, the resultant perovskite solar cells (PVSCs) are intrinsically unstable owing to ion migration, which severely impedes performance enhancement, even with device encapsulation. There is no doubt that the investigation of ion migration and the summarization of recent advances in inhibition strategies are necessary to develop "state-of-the-art" PVSCs with high intrinsic stability for accelerated commercialization. This review systematically elaborates on the generation and fundamental mechanisms of ion migration in PVSCs, the impact of ion migration on hysteresis, phase segregation, and operational stability, and the characterizations for ion migration in PVSCs. Then, many related works on the strategies for inhibiting ion migration toward highly efficient and stable PVSCs are summarized. Finally, the perspectives on the current obstacles and prospective strategies for inhibition of ion migration in PVSCs to boost operational stability and meet all of the requirements for commercialization success are summarized. The resultant perovskite solar cells are intrinsically unstable owing to ion migration, which severely impedes performance enhancement, even with device encapsulation. This review aims to provide a thorough understanding of the origin of ion migration and the action of effective inhibition strategies that are essential for the development of "state-of-the-art" perovskite solar cells with high intrinsic stability to accelerate commercialization.image
引用
收藏
页数:46
相关论文
共 50 条
  • [31] Superhalogen Passivation for Efficient and Stable Perovskite Solar Cells
    Kim, Hobeom
    Lim, Jaekeun
    Sohail, Muhammad
    Nazeeruddin, Mohammad Khaja
    SOLAR RRL, 2022, 6 (07)
  • [32] Ionic Liquids for Efficient and Stable Perovskite Solar Cells
    Wu, Haixia
    Li, Zheng
    Zhang, Fangyong
    Kang, Chaoming
    Li, Yuelong
    ADVANCED MATERIALS INTERFACES, 2022, 9 (32)
  • [33] Interface Modification of a Perovskite/Hole Transport Layer with Tetraphenyldibenzoperiflanthene for Highly Efficient and Stable Solar Cells
    Li, Shiqi
    Wu, Yukun
    Zhang, Chenxi
    Liu, Yifan
    Sun, Qinjun
    Cui, Yanxia
    Liu, Shengzhong Frank
    Hao, Yuying
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (40) : 45073 - 45082
  • [34] Ion Migration in Organic-Inorganic Hybrid Perovskite Solar Cells: Current Understanding and Perspectives
    Zhu, Weike
    Wang, Shurong
    Zhang, Xin
    Wang, Aili
    Wu, Cheng
    Hao, Feng
    SMALL, 2022, 18 (15)
  • [35] Highly Efficient and Stable Perovskite Solar Cells based on a Low-Cost Carbon Cloth
    Gholipour, Somayeh
    Correa-Baena, Juan-Pablo
    Domanski, Konrad
    Matsui, Taisuke
    Steier, Ludmilla
    Giordano, Fabrizio
    Tajabadi, Fariba
    Tress, Wolfgang
    Saliba, Michael
    Abate, Antonio
    Ali, Abdollah Morteza
    Taghavinia, Nima
    Graetzel, Michael
    Hagfeldt, Anders
    ADVANCED ENERGY MATERIALS, 2016, 6 (20)
  • [36] Synergistic modification of benzimidazole and bromohexyl for highly efficient and stable perovskite solar cells
    Sun, Xianggang
    Shi, Linxing
    Zhang, Yuanyuan
    Yuan, Haoyang
    Zhang, Kaizhi
    Duan, Liangsheng
    Li, Qile
    Huang, Zengguang
    Ban, Xinxin
    Zhang, DongEn
    CHEMICAL ENGINEERING JOURNAL, 2022, 453
  • [37] Highly Efficient and Stable Wide-Bandgap Perovskite Solar Cells via Strain Management
    Hang, Pengjie
    Kan, Chenxia
    Li, Biao
    Yao, Yuxin
    Hu, Zechen
    Zhang, Yiqiang
    Xie, Jiangsheng
    Wang, Ying
    Yang, Deren
    Yu, Xuegong
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (11)
  • [38] Hole Transport Bilayer for Highly Efficient and Stable Inverted Perovskite Solar Cells
    Javaid, Hamza
    Duzhko, Volodimyr V.
    Venkataraman, D.
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (01) : 72 - 80
  • [39] Interfacial Modification of NiOx for Highly Efficient and Stable Inverted Perovskite Solar Cells
    Zhou, Yu
    Huang, Xiaozhen
    Zhang, Jinsen
    Zhang, Lin
    Wu, Haotian
    Zhou, Ying
    Wang, Yao
    Wang, Yang
    Fu, Weifei
    Chen, Hongzheng
    ADVANCED ENERGY MATERIALS, 2024, 14 (25)
  • [40] Mixed Dimensional Perovskites Heterostructure for Highly Efficient and Stable Perovskite Solar Cells
    Ge, Chuangye
    Lu, Jian-Fang
    Singh, Mriganka
    Ng, Annie
    Yu, Wei
    Lin, Haoran
    Satapathi, Soumitra
    Hu, Hanlin
    SOLAR RRL, 2022, 6 (04):