Automated segmentation of meningioma from contrast-enhanced T1-weighted MRI images in a case series using a marker-controlled watershed segmentation and fuzzy C-means clustering machine learning algorithm

被引:3
作者
Mohammadi, Sana [1 ]
Ghaderi, Sadegh [2 ,6 ]
Ghaderi, Kayvan [3 ]
Mohammadi, Mahdi [4 ]
Pourasl, Masoud Hoseini [5 ]
机构
[1] Iran Univ Med Sci, Sch Med, Dept Med Sci, Tehran, Iran
[2] Univ Tehran Med Sci, Sch Adv Technol Med, Dept Neurosci & Addict Studies, Tehran, Iran
[3] Univ Kurdistan, Fac Engn, Dept Informat Technol & Comp Engn, Sanandaj 6617715175, Iran
[4] Univ Tehran Med Sci, Sch Med, Dept Med Phys & Biomed Engn, Tehran, Iran
[5] Kurdistan Univ Med Sci, Dept Radiol, Sanandaj, Iran
[6] Eastern Side Tehran Univ, Dept Neurosci & Addict Studies, Sch Adv Technol Med, Tehran Univ Med Sci, Italy St 88, Tehran 1417755469, Iran
来源
INTERNATIONAL JOURNAL OF SURGERY CASE REPORTS | 2023年 / 111卷
关键词
MRI; Meningioma; Tumor segmentation; Marker -controlled watershed algorithm; DEEP; CHALLENGES; RADIOMICS;
D O I
10.1016/j.ijscr.2023.108818
中图分类号
R61 [外科手术学];
学科分类号
摘要
Introduction and importance: Accurate segmentation of meningiomas from contrast-enhanced T1-weighted (CE T1-w) magnetic resonance imaging (MRI) is crucial for diagnosis and treatment planning. Manual segmentation is time-consuming and prone to variability. To evaluate an automated segmentation approach for meningiomas using marker-controlled watershed segmentation (MCWS) and fuzzy c-means (FCM) algorithms.Case presentation and methods: CE T1-w MRI of 3 female patients (aged 59, 44, 67 years) with right frontal meningiomas were analyzed. Images were converted to grayscale and preprocessed with Otsu's thresholding and FCM clustering. MCWS segmentation was performed. Segmentation accuracy was assessed by comparing auto-mated segmentations to manual delineations.Clinical discussion: The approach successfully segmented meningiomas in all cases. Mean sensitivity was 0.8822, indicating accurate identification of tumors. Mean Dice similarity coefficient between Otsu's and FCM1 was 0.6599, suggesting good overlap between segmentation methods.Conclusion: The MCWS and FCM approach enables accurate automated segmentation of meningiomas from CE T1-w MRI. With further validation on larger datasets, this could provide an efficient tool to assist in delineating meningioma boundaries for clinical management.
引用
收藏
页数:8
相关论文
共 57 条
[1]   Brain Tumor Detection Based on Deep Learning Approaches and Magnetic Resonance Imaging [J].
Abdusalomov, Akmalbek Bobomirzaevich ;
Mukhiddinov, Mukhriddin ;
Whangbo, Taeg Keun .
CANCERS, 2023, 15 (16)
[2]   The PROCESS 2020 Guideline: Updating Consensus Preferred Reporting Of CasE Series in Surgery (PROCESS) Guidelines [J].
Agha, Riaz A. ;
Sohrabi, Catrin ;
Mathew, Ginimol ;
Franchi, Thomas ;
Kerwan, Ahmed ;
O'Neill, Niamh ;
Thoma, Achilles ;
Beamish, Andrew J. ;
Noureldin, Ashraf ;
Rao, Ashwini ;
Vasudevan, Baskaran ;
Challacombe, Ben ;
Perakath, Benjamin ;
Kirshtein, Boris ;
Ekser, Burcin ;
Pramesh, C. S. ;
Laskin, Daniel M. ;
Machado-Aranda, David ;
Pagano, Duilio ;
Roy, Gaurav ;
Kadioglu, Huseyin ;
Nixon, Iain J. ;
Mukhejree, Indraneil ;
McCaul, James A. ;
Ngu, James Chi-Yong ;
Albrecht, Joerg ;
Gomez Rivas, Juan ;
Raveendran, Kandiah ;
Derbyshire, Laura ;
Ather, M. Hammad ;
Thorat, Mangesh A. ;
Valmasoni, Michele ;
Bashashati, Mohammad ;
Chalkoo, Mushtaq ;
Teo, Nan Zun ;
Raison, Nicholas ;
Muensterer, Oliver J. ;
Bradley, Patrick James ;
Goel, Prabudh ;
Pai, Prathamesh S. ;
Afifi, Raafat Yahia ;
Rosin, Richard David ;
Coppola, Roberto ;
Klappenbach, Roberto ;
Wynn, Rolf ;
Surani, Salim ;
Giordano, Salvatore ;
Massarut, Samuele ;
Raja, Shahzad G. ;
Basu, Somprakas .
INTERNATIONAL JOURNAL OF SURGERY, 2020, 84 :231-235
[3]   Histological-subtypes and anatomical location correlated in meningeal brain tumors (meningiomas) [J].
Bhat, Abdul Rashid ;
Wani, Muhammed Afzal ;
Kirmani, Altaf Rehman ;
Ramzan, Altaf Umar .
JOURNAL OF NEUROSCIENCES IN RURAL PRACTICE, 2014, 5 (03) :244-249
[4]   Deep neural networks allow expert-level brain meningioma segmentation and present potential for improvement of clinical practice [J].
Boaro, Alessandro ;
Kaczmarzyk, Jakub R. ;
Kavouridis, Vasileios K. ;
Harary, Maya ;
Mammi, Marco ;
Dawood, Hassan ;
Shea, Alice ;
Cho, Elise Y. ;
Juvekar, Parikshit ;
Noh, Thomas ;
Rana, Aakanksha ;
Ghosh, Satrajit ;
Arnaout, Omar .
SCIENTIFIC REPORTS, 2022, 12 (01)
[5]   Meningioma Segmentation in T1-Weighted MRI Leveraging Global Context and Attention Mechanisms [J].
Bouget, David ;
Pedersen, Andre ;
Hosainey, Sayied Abdol Mohieb ;
Solheim, Ole ;
Reinertsen, Ingerid .
FRONTIERS IN RADIOLOGY, 2021, 1
[6]   An overview of meningiomas [J].
Buerki, Robin A. ;
Horbinski, Craig M. ;
Kruser, Timothy ;
Horowitz, Peleg M. ;
James, Charles David ;
Lukas, Rimas V. .
FUTURE ONCOLOGY, 2018, 14 (21) :2161-2177
[7]   Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study [J].
Chen, Haolin ;
Li, Shuqi ;
Zhang, Youming ;
Liu, Lizhi ;
Lv, Xiaofei ;
Yi, Yongju ;
Ruan, Guangying ;
Ke, Chao ;
Feng, Yanqiu .
EUROPEAN RADIOLOGY, 2022, 32 (10) :7248-7259
[8]   Recent advances and applications of deep learning methods in materials science [J].
Choudhary, Kamal ;
DeCost, Brian ;
Chen, Chi ;
Jain, Anubhav ;
Tavazza, Francesca ;
Cohn, Ryan ;
Park, Cheol Woo ;
Choudhary, Alok ;
Agrawal, Ankit ;
Billinge, Simon J. L. ;
Holm, Elizabeth ;
Ong, Shyue Ping ;
Wolverton, Chris .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
[9]   Fuzzy c-means clustering with spatial information for image segmentation [J].
Chuang, KS ;
Tzeng, HL ;
Chen, S ;
Wu, J ;
Chen, TJ .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2006, 30 (01) :9-15
[10]   Malignant lesion segmentation in contrast-enhanced breast MR images based on the marker-controlled watershed [J].
Cui, Yunfeng ;
Tan, Yongqiang ;
Zhao, Binsheng ;
Liberman, Laura ;
Parbhu, Rakesh ;
Kaplan, Jennifer ;
Theodoulou, Maria ;
Hudis, Clifford ;
Schwartz, Lawrence H. .
MEDICAL PHYSICS, 2009, 36 (10) :4359-4369