A First Complete Algorithm for Real Quantifier Elimination in Isabelle/HOL

被引:2
作者
Kosaian, Katherine [1 ]
Tan, Yong Kiam [1 ]
Platzer, Andre [2 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Karlsruhe Inst Technol, Karlsruhe, Germany
来源
PROCEEDINGS OF THE 12TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON CERTIFIED PROGRAMS AND PROOFS, CPP 2023 | 2023年
基金
美国国家科学基金会;
关键词
quantifier elimination; theorem proving; real arithmetic; multivariate polynomials; CYLINDRICAL ALGEBRAIC DECOMPOSITION;
D O I
10.1145/3573105.3575672
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We formalize a multivariate quantifier elimination (QE) algorithm in the theorem prover Isabelle/HOL. Our algorithm is complete, in that it is able to reduce any quantified formula in the first-order logic of real arithmetic to a logically equivalent quantifier-free formula. The algorithm we formalize is a hybrid mixture of Tarski's original QE algorithm and the Ben-Or, Kozen, and Reif algorithm, and it is the first complete multivariate QE algorithm formalized in Isabelle/HOL.
引用
收藏
页码:211 / 224
页数:14
相关论文
共 42 条
[1]  
Basu S, 2006, ALGORITHMS REAL ALGE, V10, DOI [DOI 10.1007/3-540-33099-2, 10.1007/3-540-33099-2]
[2]   THE COMPLEXITY OF ELEMENTARY ALGEBRA AND GEOMETRY [J].
BENOR, M ;
KOZEN, D ;
REIF, J .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1986, 32 (02) :251-264
[3]  
Brown C. W., 2003, SIGSAM Bulletin, V37, P97, DOI 10.1145/968708.968710
[4]   Improved projection for cylindrical algebraic decomposition [J].
Brown, CW .
JOURNAL OF SYMBOLIC COMPUTATION, 2001, 32 (05) :447-465
[5]   IMPROVED ALGORITHMS FOR SIGN DETERMINATION AND EXISTENTIAL QUANTIFIER ELIMINATION [J].
CANNY, J .
COMPUTER JOURNAL, 1993, 36 (05) :409-418
[6]  
Cohen C., 2021, PREPRINT, DOI 10.
[7]  
Cohen C., 2012, THESIS ECOLE POLYTEC
[8]   FORMAL PROOFS IN REAL ALGEBRAIC GEOMETRY: FROM ORDERED FIELDS TO QUANTIFIER ELIMINATION [J].
Cohen, Cyril ;
Mahboubi, Assia .
LOGICAL METHODS IN COMPUTER SCIENCE, 2012, 8 (01)
[9]  
Collins G. E., 1975, Automata Theory and Formal Language 2nd GI Conference, P134
[10]   PARTIAL CYLINDRICAL ALGEBRAIC DECOMPOSITION FOR QUANTIFIER ELIMINATION [J].
COLLINS, GE ;
HONG, H .
JOURNAL OF SYMBOLIC COMPUTATION, 1991, 12 (03) :299-328