LOWER BOUNDS FOR MAHLER-TYPE MEASURES OF POLYNOMIALS

被引:0
作者
Dubickas, Arturas [1 ]
Pritsker, Igor [2 ]
机构
[1] Vilnius Univ, Inst Math, Fac Math & Informat, Naugarduko 24, LT-03225 Vilnius, Lithuania
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
关键词
Mahler measure; lower bound; sharp inequality; INTEGRAL-INEQUALITIES; SHARP INEQUALITIES;
D O I
10.1090/proc/16381
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this note we consider various generalizations of the classical Mahler measure M(P) = exp 0 log |P(ei theta) d theta for complex polynomials P, and prove sharp lower bounds for them. For example, we show that for any monic polynomial P is an element of C[z] satisfying |P (0)| = 1 the quantity M0 (P) = exp 0 max(0, log |P(ei theta)|) d theta is greater than or equal to M(1 + z1 + z2) = 1.381356.. .. This inequality is best possible, with equality being attained for all P(z) = zn + c with n is an element of N and |c| = 1.
引用
收藏
页码:3673 / 3680
页数:8
相关论文
共 19 条
[1]   Algebraic numbers close to 1 and variants of Mahler's measure [J].
Amoroso, F .
JOURNAL OF NUMBER THEORY, 1996, 60 (01) :80-96
[2]   INTEGRAL-INEQUALITIES FOR ALGEBRAIC POLYNOMIALS ON THE UNIT-CIRCLE [J].
ARESTOV, VV .
MATHEMATICAL NOTES, 1990, 48 (3-4) :977-984
[3]  
ARESTOV VV, 1981, MATH USSR IZV+, V45, P1
[4]  
Baernstein II A., 1993, COMPLEX VARIABLES TH, V21, P137, DOI DOI 10.1080/17476939308814623
[5]   2 SHARP INEQUALITIES FOR THE NORM OF A FACTOR OF A POLYNOMIAL [J].
BOYD, DW .
MATHEMATIKA, 1992, 39 (78) :341-349
[6]   SHARP INEQUALITIES FOR THE PRODUCT OF POLYNOMIALS [J].
BOYD, DW .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 :449-454
[7]  
Brunault F, 2020, AUST MATH SOC LECT, V28, P1, DOI 10.1017/9781108885553
[8]   Hilbert transforms and the equidistribution of zeros of polynomials [J].
Carneiro, Emanuel ;
Das, Mithun Kumar ;
Florea, Alexandra ;
Kumchev, Angel, V ;
Malik, Amita ;
Milinovich, Micah B. ;
Turnage-Butterbaugh, Caroline ;
Wang, Jiuya .
JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (09)
[9]  
de Bruijn N.G., 1947, Indagationes Math, V9, P406
[10]   On Mahler's inequality for the sum of polynomials [J].
Dubickas, Arturas .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (05) :313-319