Biomechanical influence of narrow-diameter implants placed at the crestal and subcrestal level in the maxillary anterior region. A 3D finite element analysis

被引:2
作者
Cruz, Ronaldo S. [1 ]
Fernandes e Oliveira, Hiskell Francine [1 ]
Lemos, Cleidiel Aparecido Araujo [2 ]
Batista, Victor Eduardo de Souza [3 ]
da Silva, Rodrigo Capalbo [1 ]
Verri, Fellippo R. [1 ]
机构
[1] Univ Estadual Paulista, Aracatuba Dent Sch UNESP, Dept Dent Mat & Prosthodont, Jose Bonifacio St 1193, BR-16015050 Aracatuba, SP, Brazil
[2] Fed Univ Juiz de Fora UFJF, Dept Dent, Div Prosthodont, Campus Governador Valadares, Governador Valadares, MG, Brazil
[3] Univ Western Sao Paulo UNOESTE, Presidente Prudente Dent Sch, Dept Prosthodont, Presidente Prudente, Brazil
来源
JOURNAL OF PROSTHODONTICS-IMPLANT ESTHETIC AND RECONSTRUCTIVE DENTISTRY | 2024年 / 33卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
dental implants; dental prosthesis; finite element analysis; DENTAL IMPLANTS; STRESS-DISTRIBUTION; EXTERNAL HEXAGON; BONE-RESORPTION; LENGTH; SURFACE; CROWN; CONNECTION; SURVIVAL; TISSUE;
D O I
10.1111/jopr.13667
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
PurposeTo evaluate the tendency of movement, stress distribution, and microstrain of single-unit crowns in simulated cortical and trabecular bone, implants, and prosthetic components of narrow-diameter implants with different lengths placed at the crestal and subcrestal levels in the maxillary anterior region using 3D finite element analysis (FEA). Materials and methodsSix 3D models were simulated using Invesalius 3.0, Rhinoceros 4.0, and SolidWorks software. Each model simulated the right anterior maxillary region including a Morse taper implant of o2.9 mm with different lengths (7, 10, and 13 mm) placed at the crestal and subcrestal level and supporting a cement-retained monolithic single crown in the area of tooth 12. The FEA was performed using ANSYS 19.2. The simulated applied force was 178 N at 0 degrees, 30 degrees, and 60 degrees. The results were analyzed using maps of displacement, von Mises (vM) stress, maximum principal stress, and microstrain. ResultsModels with implants at the subcrestal level showed greater displacement. vM stress increased in the implant and prosthetic components when implants were placed at the subcrestal level compared with the crestal level; the length of the implants had a low influence on the stress distribution. Higher stress and strain concentrations were observed in the cortical bone of the subcrestal placement, independent of implant length. Non-axial loading influenced the increased stress and strain in all the evaluated structures. ConclusionsNarrow-diameter implants positioned at the crestal level showed a more favorable biomechanical behavior for simulated cortical bone, implants, and prosthetic components. Implant length had a smaller influence on stress or strain distribution than the other variables.
引用
收藏
页码:180 / 187
页数:8
相关论文
共 47 条
[1]   Soft Tissue and Crestal Bone Changes Around Implants with Platform-Switched Abutments Placed Nonsubmerged at Subcrestal Position: A 2-Year Clinical and Radiographic Evaluation [J].
Aimetti, Mario ;
Ferrarotti, Francesco ;
Mariani, Giulia Maria ;
Ghelardoni, Carlo ;
Romano, Federica .
INTERNATIONAL JOURNAL OF ORAL & MAXILLOFACIAL IMPLANTS, 2015, 30 (06) :1369-1377
[2]  
Amid Reza, 2017, J Long Term Eff Med Implants, V27, P1, DOI 10.1615/JLongTermEffMedImplants.2017019926
[3]   Splinted and Nonsplinted Crowns with Different Implant Lengths in the Posterior Maxilla by Three-Dimensional Finite Element Analysis [J].
Araujo Lemos, Cleidiel Aparecido ;
Verri, Fellippo Ramos ;
Santiago Junior, Joel Ferreira ;
de Souza Batista, Victor Eduardo ;
Kemmoku, Daniel Takanori ;
Noritomi, Pedro Yoshito ;
Pellizzer, Eduardo Piza .
JOURNAL OF HEALTHCARE ENGINEERING, 2018, 2018
[4]   THE INFLUENCE OF IMPLANT DIAMETER AND LENGTH ON STRESS DISTRIBUTION OF OSSEOINTEGRATED IMPLANTS RELATED TO CRESTAL BONE GEOMETRY: A THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS [J].
Baggi, Luigi ;
Cappelloni, Ilaria ;
Di Girolamo, Michele ;
Maceri, Franco ;
Vairo, Giuseppe .
JOURNAL OF PROSTHETIC DENTISTRY, 2008, 100 (06) :422-431
[5]  
Bordin Dimorvan, 2019, Braz. Dent. J., V30, P238, DOI 10.1590/0103-6440201902533
[6]   Parafunctional loading and occlusal device on stress distribution around implants: A 3D finite element analysis [J].
Borges Radaelli, Manuel Tomas ;
Idogava, Henrique Takashi ;
Spazzin, Aloisio Oro ;
Noritomi, Pedro Yoshito ;
Boscato, Noeli .
JOURNAL OF PROSTHETIC DENTISTRY, 2018, 120 (04) :565-572
[7]   COMBINED EFFECTS OF IMPLANT INSERTION DEPTH AND ALVEOLAR BONE QUALITY ON PERIIMPLANT BONE STRAIN INDUCED BY A WIDE-DIAMETER, SHORT IMPLANT AND A NARROW-DIAMETER, LONG IMPLANT [J].
Chou, Hsuan-Yu ;
Muftu, Sinan ;
Bozkaya, Dincer .
JOURNAL OF PROSTHETIC DENTISTRY, 2010, 104 (05) :293-300
[8]   Reasons for failures of oral implants [J].
Chrcanovic, B. R. ;
Albrektsson, T. ;
Wennerberg, A. .
JOURNAL OF ORAL REHABILITATION, 2014, 41 (06) :443-476
[9]   Biomechanical Evaluation of Subcrestal Placement of Dental Implants: In Vitro and Numerical Analyses [J].
Chu, Chun-Ming ;
Hsu, Jui-Ting ;
Fuh, Lih-Jyh ;
Huang, Heng-Li .
JOURNAL OF PERIODONTOLOGY, 2011, 82 (02) :302-310
[10]   Narrow-diameter implants versus regular-diameter implants for rehabilitation of the anterior region: a systematic review and meta-analysis [J].
Cruz, R. S. ;
Lemos, C. A. A. ;
de Batista, V. E. S. ;
Yogui, F. C. ;
Oliveira, H. F. F. ;
Verri, F. R. .
INTERNATIONAL JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2021, 50 (05) :674-682