Asymptotic behavior of solutions to a dissipative nonlinear Schrodinger equation with time-dependent harmonic potentials

被引:0
作者
Kawamoto, Masaki [1 ]
Sato, Takuya [2 ]
机构
[1] Ehime Univ, Grad Sch Sci & Engn, Dept Engn Prod, Matsuyama, Ehime 7908577, Japan
[2] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
LONG-RANGE SCATTERING; CAUCHY-PROBLEM; DECAY-RATES; EXISTENCE; NONEXISTENCE; SYSTEM;
D O I
10.1016/j.jde.2022.11.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyzed the Cauchy problem of a dissipative nonlinear Schrodinger equation with a time-dependent harmonic potential. We identified a critical situation that determines whether the L2-norm of dissipative solutions exhibits decay, which depends on a nonlinear power and time decay order of harmonic potential. (C) 2022 Published by Elsevier Inc.
引用
收藏
页码:418 / 446
页数:29
相关论文
共 53 条
[1]  
Antonelli P., 2013, INT MATH RES NOT, V217, P23
[3]   LARGE TIME BEHAVIOR IN NONLINEAR SCHRODINGER EQUATIONS WITH TIME DEPENDENT POTENTIAL [J].
Carles, Remi ;
Silva, Jorge Drumond .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (02) :443-460
[4]   NONLINEAR SCHRODINGER EQUATION WITH TIME DEPENDENT POTENTIAL [J].
Carles, Remi .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2011, 9 (04) :937-964
[5]   THE CAUCHY-PROBLEM FOR THE NONLINEAR SCHRODINGER-EQUATION IN H-1 [J].
CAZENAVE, T ;
WEISSLER, FB .
MANUSCRIPTA MATHEMATICA, 1988, 61 (04) :477-494
[6]  
Cazenave T., 2003, SEMILINEAR SCHRODING
[7]   Asymptotic behavior for a dissipative nonlinear Schrodinger [J].
Cazenave, Thierry ;
Han, Zheng ;
Naumkin, Ivan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 205
[8]   ASYMPTOTIC BEHAVIOR FOR A SCHRODINGER EQUATION WITH NONLINEAR SUBCRITICAL DISSIPATION [J].
Cazenave, Thierry ;
Han, Zheng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (08) :4801-4819
[9]   Modified scattering for the critical nonlinear Schrodinger equation [J].
Cazenave, Thierry ;
Naumkin, Ivan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (02) :402-432
[10]   Local existence, global existence, and scattering for the nonlinear Schrodinger equation [J].
Cazenave, Thierry ;
Naumkin, Ivan .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (02)