Advanced nano-based strategies for mRNA tumor vaccine

被引:0
作者
Qu, Yangqi [1 ]
Xu, Jingjing [1 ]
Zhang, Tong [1 ]
Chen, Qinjun [1 ]
Sun, Tao [1 ]
Jiang, Chen [1 ]
机构
[1] Fudan Univ, Key Lab Smart Drug Delivery, Sch Pharm, State Key Lab Med Neurobiol,Minist Educ,Dept Pharm, Shanghai 201203, Peoples R China
基金
中国博士后科学基金; 上海市自然科学基金;
关键词
mRNA vaccine; Nanoparticle; Tumor vaccine; Delivery system; Stability; Targeting; Transfection; Immunogenicity; BLOOD-CELL MEMBRANE; COMBINATION IMMUNOTHERAPY; BREAST-CANCER; DELIVERY; NANOPARTICLES; RELEASE; BINDING; TARGET; GENE;
D O I
10.1016/j.apsb.2023.07.0252211-3835
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Tumor vaccine is a promising strategy for cancer immunotherapy by introducing tumor antigens into the body to activate specific anti-tumor immune responses. Along with the technological breakthroughs in genetic engineering and delivery systems, messenger ribonucleic acid (mRNA) technology has achieved unprecedented development and application over the last few years, especially the emergency use authorizations of two mRNA vaccines during the COVID-19 pandemic, which has saved countless lives and makes the world witness the powerful efficacy of mRNA technology in vaccines. However, unlike infectious disease vaccines, which mainly induce humoral immunity, tumor vaccines also need to activate potent cellular immunity to control tumor growth, which creates a higher demand for mRNA delivery to the lymphatic organs and antigen-presenting cells (APCs). Here we review the existing bottlenecks of mRNA tumor vaccines and advanced nano-based strategies to overcome those challenges, as well as future considerations of mRNA tumor vaccines and their delivery systems.
引用
收藏
页码:170 / 189
页数:20
相关论文
共 96 条
[41]   Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. [J].
Kantoff, Philip W. ;
Higano, Celestia S. ;
Shore, Neal D. ;
Berger, E. Roy ;
Small, Eric J. ;
Penson, David F. ;
Redfern, Charles H. ;
Ferrari, Anna C. ;
Dreicer, Robert ;
Sims, Robert B. ;
Xu, Yi ;
Frohlich, Mark W. ;
Schellhammer, Paul F. ;
Ahmed, T. ;
Amin, A. ;
Arseneau, J. ;
Barth, N. ;
Bernstein, G. ;
Bracken, B. ;
Burch, P. ;
Caggiano, V. ;
Chin, J. ;
Chodak, G. ;
Chu, F. ;
Corman, J. ;
Curti, B. ;
Dawson, N. ;
Deeken, J. F. ;
Dubernet, T. ;
Fishman, M. ;
Flanigan, R. ;
Gailani, F. ;
Garbo, L. ;
Gardner, T. ;
Gelmann, E. ;
George, D. ;
Godfrey, T. ;
Gomella, L. ;
Guerra, M. ;
Hall, S. ;
Hanson, J. ;
Israeli, R. ;
Jancis, E. ;
Jewett, M. A. S. ;
Kassabian, V. ;
Katz, J. ;
Klotz, L. ;
Koeneman, K. ;
Koh, H. ;
Kratzke, R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (05) :411-422
[42]   Cancer Immunotherapy: An Effective Tool in Cancer Control and Treatment [J].
Kaur, Kawalpreet ;
Khatik, Gopal L. .
CURRENT CANCER THERAPY REVIEWS, 2020, 16 (01) :62-69
[43]   Engineering Lipid Nanoparticles for Enhanced Intracellular Delivery of mRNA through Inhalation [J].
Kim, Jeonghwan ;
Jozic, Antony ;
Lin, Yuxin ;
Eygeris, Yulia ;
Bloom, Elissa ;
Tan, Xiaochen ;
Acosta, Christopher ;
MacDonald, Kelvin D. ;
Welsher, Kevin D. ;
Sahay, Gaurav .
ACS NANO, 2022, 16 (09) :14792-14806
[44]   Synthetic vaccine nanoparticles target to lymph node triggering enhanced innate and adaptive antitumor immunity [J].
Kim, Sun-Young ;
Noh, Young-Woock ;
Kang, Tae Heung ;
Kim, Jung-Eun ;
Kim, Sohyun ;
Um, Soong Ho ;
Oh, Doo-Byoung ;
Park, Yeong-Min ;
Lim, Yong Taik .
BIOMATERIALS, 2017, 130 :56-66
[45]   Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy [J].
Kranz, Lena M. ;
Diken, Mustafa ;
Haas, Heinrich ;
Kreiter, Sebastian ;
Loquai, Carmen ;
Reuter, Kerstin C. ;
Meng, Martin ;
Fritz, Daniel ;
Vascotto, Fulvia ;
Hefesha, Hossam ;
Grunwitz, Christian ;
Vormehr, Mathias ;
Huesemann, Yves ;
Selmi, Abderraouf ;
Kuhn, Andreas N. ;
Buck, Janina ;
Derhovanessian, Evelyna ;
Rae, Richard ;
Attig, Sebastian ;
Diekmann, Jan ;
Jabulowsky, Robert A. ;
Heesch, Sandra ;
Hassel, Jessica ;
Langguth, Peter ;
Grabbe, Stephan ;
Huber, Christoph ;
Tuereci, Oezlem ;
Sahin, Ugur .
NATURE, 2016, 534 (7607) :396-+
[46]   Identification of neoantigens for individualized therapeutic cancer vaccines [J].
Lang, Franziska ;
Schroers, Barbara ;
Loewer, Martin ;
Tuereci, Oezlem ;
Sahin, Ugur .
NATURE REVIEWS DRUG DISCOVERY, 2022, 21 (04) :261-282
[47]   Preclinical evaluation of mRNA trimannosylated lipopolyplexes as therapeutic cancer vaccines targeting dendritic cells [J].
Le Moignic, A. ;
Malard, V ;
Benvegnu, T. ;
Lemiegre, L. ;
Berchel, M. ;
Jaffres, P-A ;
Baillou, C. ;
Delost, M. ;
Macedo, R. ;
Rochefort, J. ;
Lescaille, G. ;
Pichon, C. ;
Lemoine, F. M. ;
Midoux, P. ;
Mateo, V .
JOURNAL OF CONTROLLED RELEASE, 2018, 278 :110-121
[48]   Adjuvant incorporated lipid nanoparticles for enhanced mRNA-mediated cancer immunotherapy [J].
Lee, Kyuri ;
Kim, Soo Young ;
Seo, Yunmi ;
Kim, Myung Hee ;
Chang, Jun ;
Lee, Hyukjin .
BIOMATERIALS SCIENCE, 2020, 8 (04) :1101-1105
[49]   A PEG-lipid-free COVID-19 mRNA vaccine triggers robust immune responses in mice [J].
Li, Min ;
Huang, Yixuan ;
Wu, Jiacai ;
Li, Sanpeng ;
Mei, Miao ;
Chen, Haixia ;
Wang, Ning ;
Wu, Weigang ;
Zhou, Boping ;
Tan, Xu ;
Li, Bin .
MATERIALS HORIZONS, 2023, 10 (02) :466-472
[50]   Rapid Surface Display of mRNA Antigens by Bacteria-Derived Outer Membrane Vesicles for a Personalized Tumor Vaccine [J].
Li, Yao ;
Ma, Xiaotu ;
Yue, Yale ;
Zhang, Kaiyue ;
Cheng, Keman ;
Feng, Qingqing ;
Ma, Nana ;
Liang, Jie ;
Zhang, Tianjiao ;
Zhang, Lizhuo ;
Chen, Zhiqiang ;
Wang, Xinwei ;
Ren, Lei ;
Zhao, Xiao ;
Nie, Guangjun .
ADVANCED MATERIALS, 2022, 34 (20)