Influence of cumulative damage on synchronization of Kuramoto oscillators on networks

被引:2
作者
Eraso-Hernandez, L. K. [1 ]
Riascos, A. P. [1 ,2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Ciudad De Mexico 01000, Mexico
[2] Univ Nacl Colombia, Dept Fis, Bogota, Colombia
关键词
Kuramoto model; cumulative damage; complex networks; preferential attachment; synchronization; PHASE SYNCHRONIZATION; COMPLEX NETWORKS; MODEL; POPULATIONS; STABILITY;
D O I
10.1088/1751-8121/ad043b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the synchronization of identical Kuramoto phase oscillators under cumulative stochastic damage to the edges of networks. We analyze the capacity of coupled oscillators to reach a coherent state from initial random phases. The process of synchronization is a global function performed by a system that gradually changes when the damage weakens individual connections of the network. We explore diverse structures characterized by different topologies. Among these are deterministic networks as a wheel or the lattice formed by the movements of the knight on a chess board, and random networks generated with the Erdos-Renyi and Barabasi-Albert algorithms. In addition, we study the synchronization times of 109 non-isomorphic graphs with six nodes. The synchronization times and other introduced quantities are sensitive to the impact of damage, allowing us to measure the reduction of the capacity of synchronization and classify the effect of damage in the systems under study. This approach is general and paves the way for the exploration of the effect of damage accumulation in diverse dynamical processes in complex systems.
引用
收藏
页数:23
相关论文
共 92 条
  • [31] The synchronized dynamics of time-varying networks
    Ghosh, Dibakar
    Frasca, Mattia
    Rizzo, Alessandro
    Majhi, Soumen
    Rakshit, Sarbendu
    Alfaro-Bittner, Karin
    Boccaletti, Stefano
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2022, 949 : 1 - 63
  • [32] Paths to synchronization on complex networks
    Gomez-Gardenes, Jesus
    Moreno, Yamir
    Arenas, Alex
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (03)
  • [33] Explosive Synchronization Transitions in Scale-Free Networks
    Gomez-Gardenes, Jesus
    Gomez, Sergio
    Arenas, Alex
    Moreno, Yamir
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (12)
  • [34] Speed of complex network synchronization
    Grabow, C.
    Grosskinsky, S.
    Timme, M.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2011, 84 (04) : 613 - 626
  • [35] Do small worlds synchronize fastest?
    Grabow, C.
    Hill, S. M.
    Grosskinsky, S.
    Timme, M.
    [J]. EPL, 2010, 90 (04)
  • [36] Kullback-Leibler divergence measure of intermittency: Application to turbulence
    Granero-Belinchon, Carlos
    Roux, Stephane G.
    Garnier, Nicolas B.
    [J]. PHYSICAL REVIEW E, 2018, 97 (01):
  • [37] Overviews on the applications of the Kuramoto model in modern power system analysis
    Guo, Yufeng
    Zhang, Dongrui
    Li, Zhuchun
    Wang, Qi
    Yu, Daren
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 129 (129)
  • [38] On the complete synchronization of the Kuramoto phase model
    Ha, Seung-Yeal
    Ha, Taeyoung
    Kim, Jong-Ho
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (17) : 1692 - 1700
  • [39] Pathological synchronization in Parkinson's disease: networks, models and treatments
    Hammond, Constance
    Bergman, Hagai
    Brown, Peter
    [J]. TRENDS IN NEUROSCIENCES, 2007, 30 (07) : 357 - 364
  • [40] Jadbabaie A, 2004, P AMER CONTR CONF, P4296