Loss function for ambiguous boundaries for deep neural network (DNN) for image segmentation

被引:1
|
作者
Hakumura, Yuma [1 ]
Ito, Taiyo [1 ]
Matsui, Shiori [1 ]
Akiba, Yuya [1 ]
Aoki, Kimiya [1 ]
Nakashima, Yuki [2 ]
Hirao, Kiyoshi [2 ]
Fukushima, Manabu [2 ]
机构
[1] Chukyo Univ, 101-2 Yagotohonmachi,Showa Ku, Nagoya, Aichi 4668666, Japan
[2] Natl Inst Adv Ind Sci & Technol, Multimat Res Inst, Ceram Microstruct Control Grp, Nagoya, Aichi, Japan
关键词
blurriness of grain boundaries; deep neural network; fine ceramics; loss function; segmentation;
D O I
10.1002/ecj.12429
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study deals with the task of segmentation of SEM images of fine ceramics sintered bodies by using deep neural network (DNN). In particular, we focus on misclassification caused by the blurriness of grain boundaries(boundaries between particles). Therefore, we utilize the frequency distribution of brightness gradient of grain boundaries and give higher weights to pixels with lower gradient values. Experiments confirmed that the model trained with proposed loss function gave the best prediction results.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] SEGMENTATION OF RANGE IMAGE BASED ON KOHONEN NEURAL NETWORK
    Zou Ning Liu Jian Zhou Manli Li Qing(State Education Commission Res. Lab. for Image Processing & Intelligent Control. Electronic & Information Engineering Dept.
    Journal of Electronics(China), 2001, (03) : 237 - 241
  • [32] Deep Convolutional Neural Network for Brain Tumor Segmentation
    Kumar, K. Sambath
    Rajendran, A.
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 18 (05) : 3925 - 3932
  • [33] DeepRec: A deep neural network approach to recommendation with item embedding and weighted loss function
    Zhang, Wen
    Du, Yuhang
    Yoshida, Taketoshi
    Yang, Ye
    INFORMATION SCIENCES, 2019, 470 : 121 - 140
  • [34] Deep Convolutional Neural Network for Brain Tumor Segmentation
    K. Sambath Kumar
    A. Rajendran
    Journal of Electrical Engineering & Technology, 2023, 18 : 3925 - 3932
  • [35] MLP neural network classifier for medical image segmentation
    Jarrar, Manel
    Kerkeni, Asma
    Ben Abdallah, Asma
    Bedoui, Mohamed Hedi
    2016 13TH INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS, IMAGING AND VISUALIZATION (CGIV), 2016, : 88 - 93
  • [36] Improvement of automatic building region extraction based on deep neural network segmentation
    Hayasaka, Noboru
    Shirazawa, Yuki
    Kanai, Mizuki
    Futagami, Takuya
    JOURNAL OF INFORMATION AND TELECOMMUNICATION, 2023, 7 (04) : 393 - 408
  • [37] Enhanced radial basis function neural network for tomato plant disease leaf image segmentation
    Patil, Manoj A.
    Manohar, M.
    ECOLOGICAL INFORMATICS, 2022, 70
  • [38] Negative Log Likelihood Ratio Loss for Deep Neural Network Classification
    Yao, Hengshuai
    Zhu, Dong-lai
    Jiang, Bei
    Yu, Peng
    PROCEEDINGS OF THE FUTURE TECHNOLOGIES CONFERENCE (FTC) 2019, VOL 1, 2020, 1069 : 276 - 282
  • [39] A neural network based deep learning approach for efficient segmentation of brain tumor medical image data
    Veeramuthu, A.
    Meenakshi, S.
    Kumar, K. Ashok
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (05) : 4227 - 4234
  • [40] Deep learning based neural network application for automatic ultrasonic computed tomographic bone image segmentation
    Fradi Marwa
    El-hadi Zahzah
    Kais Bouallegue
    Mohsen Machhout
    Multimedia Tools and Applications, 2022, 81 : 13537 - 13562