Ceramic particles reinforced copper matrix composites manufactured by advanced powder metallurgy: preparation, performance, and mechanisms

被引:67
作者
Yan, Yi-Fan [1 ,2 ,3 ]
Kou, Shu-Qing [1 ,2 ,3 ]
Yang, Hong-Yu [1 ,2 ,3 ,6 ]
Shu, Shi-Li [1 ,4 ]
Qiu, Feng [1 ,2 ,3 ]
Jiang, Qi-Chuan [1 ,2 ,3 ]
Zhang, Lai-Chang [5 ]
机构
[1] Jilin Univ, State Key Lab Automot Simulat & Control, Renmin St 5988, Changchun 130025, Jilin, Peoples R China
[2] Jilin Univ, Minist Educ, Key Lab Automobile Mat, Renmin St 5988, Changchun 130025, Jilin, Peoples R China
[3] Jilin Univ, Dept Mat Scienceand Engn, Renmin St 5988, Changchun 130025, Jilin, Peoples R China
[4] Jilin Univ, Sch Mech & Aerosp Engn, Renmin St 5988, Changchun 130025, Jilin, Peoples R China
[5] Edith Cowan Univ, Ctr Adv Mat & Mfg, Sch Engn, 270 Joondalup Dr, Perth, WA 6027, Australia
[6] Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhenjiang 212003, Peoples R China
基金
中国国家自然科学基金;
关键词
copper matrix composites; advanced powder metallurgy; model prediction; particle characteristics; strengthening mechanism; DISPERSION-STRENGTHENED CU; THERMAL-EXPANSION BEHAVIOR; HIGH ELECTRICAL-CONDUCTIVITY; TRIBOLOGICAL PROPERTIES; CARBON NANOTUBE; WEAR BEHAVIOR; SINTERING TEMPERATURE; ELEVATED-TEMPERATURE; TENSILE PROPERTIES; YIELD STRENGTH;
D O I
10.1088/2631-7990/acdb0b
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties, thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity. This greatly expands the applications of copper as a functional material in thermal and conductive components, including electronic packaging materials and heat sinks, brushes, integrated circuit lead frames. So far, endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix. This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles, including ceramic particle content, size, morphology and interfacial bonding, on the diathermancy, electrical conductivity and mechanical behavior of copper matrix composites. The corresponding models and influencing mechanisms are also elaborated in depth. This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites. By more precise design and manipulation of composite microstructure, the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields.
引用
收藏
页数:35
相关论文
共 198 条
[1]   Correlation between micro/nano-structure, mechanical and tribological properties of copper-zirconia nanocomposites [J].
Abd-Elwahed, M. S. ;
Wagih, A. ;
Najjar, I. M. R. .
CERAMICS INTERNATIONAL, 2020, 46 (01) :56-65
[2]   Microstructure and mechanical properties of mechanically alloyed ODS copper alloy for fusion material application [J].
Aghamiri, S. M. S. ;
Oono, N. ;
Ukai, S. ;
Kasada, R. ;
Noto, H. ;
Hishinuma, Y. ;
Muroga, T. .
NUCLEAR MATERIALS AND ENERGY, 2018, 15 :17-22
[3]   Synergistic role of carbon nanotube and SiCn reinforcements on mechanical properties and corrosion behavior of Cu-based nanocomposite developed by flake powder metallurgy and spark plasma sintering process [J].
Akbarpour, M. R. ;
Mirabad, H. Mousa ;
Azar, M. Khalili ;
Kakaei, K. ;
Kim, H. S. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 786
[4]   Microstructure and compressibility of SiC nanoparticles reinforced Cu nanocomposite powders processed by high energy mechanical milling [J].
Akbarpour, M. R. ;
Salahi, E. ;
Hesari, F. Alikhani ;
Simchi, A. ;
Kim, H. S. .
CERAMICS INTERNATIONAL, 2014, 40 (01) :951-960
[5]   Characterization of oxide dispersion strengthened copper based materials developed by friction stir processing [J].
Avettand-Fenoel, M. -N. ;
Simar, A. ;
Shabadi, R. ;
Taillard, R. ;
de Meester, B. .
MATERIALS & DESIGN, 2014, 60 :343-357
[6]   CuCrW(Al2O3) nanocomposite: mechanical alloying, microstructure, and tribological properties [J].
Baghani, Mohammad ;
Aliofkhazraei, Mahmood .
INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2017, 24 (11) :1321-1334
[7]   Synergistic strengthening mechanisms of copper matrix composites with TiO2 nanoparticles [J].
Bahador, Abdollah ;
Umeda, Junko ;
Hamzah, Esah ;
Yusof, Farazila ;
Li, Xiaochun ;
Kondoh, Katsuyoshi .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 772
[8]   Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles' size and volume fraction [J].
Barmouz, M. ;
Asadi, P. ;
Givi, M. K. Besharati ;
Taherishargh, M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (03) :1740-1749
[9]   Effect of spark plasma sintering and high-pressure torsion on the microstructural and mechanical properties of a Cu-SiC composite [J].
Bazarnik, P. ;
Nosewicz, S. ;
Romelczyk-Baishya, B. ;
Chmielewski, M. ;
Nedza, A. Strojny ;
Maj, J. ;
Huang, Y. ;
Lewandowska, M. ;
Langdon, T. G. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 766
[10]   Synthesis of CuCr and CuCrAg alloy with nano-ceramic dispersion by mechanical alloying and consolidation by laser assisted sintering [J].
Bera, S. ;
Manna, I. .
MATERIALS CHEMISTRY AND PHYSICS, 2012, 132 (01) :109-118