Transition Metal Ion Doping on ZIF-8 Enhances the Electrochemical CO2 Reduction Reaction

被引:114
作者
Cho, Jin Hyuk [1 ]
Lee, Chaehyeon [2 ]
Hong, Sung Hyun [1 ]
Jang, Ho Yeon [2 ]
Back, Seoin [2 ]
Seo, Myung-gi [3 ]
Lee, Minzae [3 ]
Min, Hyung-Ki [3 ]
Choi, Youngheon [3 ]
Jang, Youn Jeong [4 ]
Ahn, Sang Hyun [5 ]
Jang, Ho Won [6 ]
Kim, Soo Young [1 ]
机构
[1] Korea Univ, Dept Mat Sci & Engn, Seoul 02841, South Korea
[2] Sogang Univ, Inst Emergent Mat, Dept Chem & Biomol Engn, Seoul 04107, South Korea
[3] Lotte Chem R&D Ctr, Daejeon 34110, South Korea
[4] Hanyang Univ, Dept Chem Engn, Seoul 04763, South Korea
[5] Chung Ang Univ, Sch Chem Engn & Mat Sci, Seoul 06974, South Korea
[6] Seoul Natl Univ, Res Inst Adv Mat, Dept Mat Sci & Engn, Seoul 08826, South Korea
关键词
carbon dioxide reduction; carbon monoxide; electrocatalyst; local effects; sp(2) C; ZIF-8; ORGANIC FRAMEWORKS; CARBON-DIOXIDE; ELECTROREDUCTION; CATALYST; ADSORPTION; CONVERSION; EVOLUTION; PRESSURE; SITES;
D O I
10.1002/adma.202208224
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical reduction of CO2 to diverse value-added chemicals is a unique, environmentally friendly approach for curbing greenhouse gas emissions while addressing sluggish catalytic activity and low Faradaic efficiency (FE) of electrocatalysts. Here, zeolite-imidazolate-frameworks-8 (ZIF-8) containing various transition metal ions-Ni, Fe, and Cu-at varying concentrations upon doping are fabricated for the electrocatalytic CO2 reduction reaction (CO2RR) to carbon monoxide (CO) without further processing. Atom coordination environments and theoretical electrocatalytic performance are scrutinized via X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations. Upon optimized Cu doping on ZIF-8, Cu0.5Zn0.5/ZIF-8 achieves a high partial current density of 11.57 mA cm(-2) and maximum FE for CO of 88.5% at -1.0 V (versus RHE) with a stable catalytic activity over 6 h. Furthermore, the electron-rich sp(2) C atom facilitates COOH* promotion after Cu doping of ZIF-8, leading to a local effect between the zinc-nitrogen (Zn-N-4) and copper-nitrogen (Cu-N-4) moieties. Additionally, the advanced CO2RR pathway is illustrated from various perspectives, including the pre-H-covered state under the CO2RR. The findings expand the pool of efficient metal-organic framework (MOF)-based CO2RR catalysts, deeming them viable alternatives to conventional catalysts.
引用
收藏
页数:9
相关论文
共 45 条
[1]   Ligand-Engineered Metal-Organic Frameworks for Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide [J].
Al-Attas, Tareq A. ;
Marei, Nedal N. ;
Yong, Xue ;
Yasri, Nael G. ;
Thangadurai, Venkataraman ;
Shimizu, George ;
Siahrostami, Samira ;
Kibria, Md Golam .
ACS CATALYSIS, 2021, 11 (12) :7350-7357
[2]   Active Sites of Au and Ag Nanoparticle Catalysts for CO2 Electroreduction to CO [J].
Back, Seoin ;
Yeom, Min Sun ;
Jung, Yousung .
ACS CATALYSIS, 2015, 5 (09) :5089-5096
[3]   Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction [J].
Chen, Kejun ;
Liu, Kang ;
An, Pengda ;
Li, Huangjingwei ;
Lin, Yiyang ;
Hu, Junhua ;
Jia, Chuankun ;
Fu, Junwei ;
Li, Hongmei ;
Liu, Hui ;
Lin, Zhang ;
Li, Wenzhang ;
Li, Jiahang ;
Lu, Ying-Rui ;
Chan, Ting-Shan ;
Zhang, Ning ;
Liu, Min .
NATURE COMMUNICATIONS, 2020, 11 (01)
[4]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[5]   Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework [J].
Cravillon, Janosch ;
Muenzer, Simon ;
Lohmeier, Sven-Jare ;
Feldhoff, Armin ;
Huber, Klaus ;
Wiebcke, Michael .
CHEMISTRY OF MATERIALS, 2009, 21 (08) :1410-1412
[6]   Electroreduction of CO2 to CO on a Mesoporous Carbon Catalyst with Progressively Removed Nitrogen Moieties [J].
Daiyan, Rahman ;
Tan, Xin ;
Chen, Rui ;
Saputera, Wibawa Hendra ;
Tahini, Hassan A. ;
Lovell, Emma ;
Ng, Yun Hau ;
Smith, Sean C. ;
Dai, Liming ;
Lu, Xunyu ;
Amal, Rose .
ACS ENERGY LETTERS, 2018, 3 (09) :2292-2298
[7]   Net-zero emissions energy systems [J].
Davis, Steven J. ;
Lewis, Nathan S. ;
Shaner, Matthew ;
Aggarwal, Sonia ;
Arent, Doug ;
Azevedo, Ines L. ;
Benson, Sally M. ;
Bradley, Thomas ;
Brouwer, Jack ;
Chiang, Yet-Ming ;
Clack, Christopher T. M. ;
Cohen, Armond ;
Doig, Stephen ;
Edmonds, Jae ;
Fennell, Paul ;
Field, Christopher B. ;
Hannegan, Bryan ;
Hodge, Bri-Mathias ;
Hoffert, Martin I. ;
Ingersoll, Eric ;
Jaramillo, Paulina ;
Lackner, Klaus S. ;
Mach, Katharine J. ;
Mastrandrea, Michael ;
Ogden, Joan ;
Peterson, Per F. ;
Sanchez, Daniel L. ;
Sperling, Daniel ;
Stagner, Joseph ;
Trancik, Jessika E. ;
Yang, Chi-Jen ;
Caldeira, Ken .
SCIENCE, 2018, 360 (6396) :1419-+
[8]   Boosting Electrochemical CO2 Reduction on Metal-Organic Frameworks via Ligand Doping [J].
Dou, Shuo ;
Song, Jiajia ;
Xi, Shibo ;
Du, Yonghua ;
Wang, Jiong ;
Huang, Zhen-Feng ;
Xu, Zhichuan J. ;
Wang, Xin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (12) :4041-4045
[9]   General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities [J].
Fei, Huilong ;
Dong, Juncai ;
Feng, Yexin ;
Allen, Christopher S. ;
Wan, Chengzhang ;
Volosskiy, Boris ;
Li, Mufan ;
Zhao, Zipeng ;
Wang, Yiliu ;
Sun, Hongtao ;
An, Pengfei ;
Chen, Wenxing ;
Guo, Zhiying ;
Lee, Chain ;
Chen, Dongliang ;
Shakir, Imran ;
Liu, Mingjie ;
Hu, Tiandou ;
Li, Yadong ;
Kirkland, Angus I. ;
Duan, Xiangfeng ;
Huang, Yu .
NATURE CATALYSIS, 2018, 1 (01) :63-72
[10]   A continuing need to revisit BECCS and its potential [J].
Galik, Christopher S. .
NATURE CLIMATE CHANGE, 2020, 10 (01) :2-3