Positive definite nonparametric regression using an evolutionary algorithm with application to covariance function estimation

被引:0
作者
Kang, Myeongjong [1 ]
机构
[1] Texas A&M Univ, College Stn, TX 77843 USA
来源
PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023 | 2023年
关键词
covariance estimation; shape constrained regression; variogram analysis; kernel smoothing; probabilistic model-building genetic algorithm; VARIOGRAM ESTIMATION;
D O I
10.1145/3583131.3590363
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel nonparametric regression framework subject to the positive definiteness constraint. It offers a highly modular approach for estimating covariance functions of stationary processes. Our method can impose positive definiteness, as well as isotropy and monotonicity, on the estimators, and its hyperparameters can be decided using cross validation. We define our estimators by taking integral transforms of kernel-based distribution surrogates. We then use the iterated density estimation evolutionary algorithm, a variant of estimation of distribution algorithms, to fit the estimators. We also extend our method to estimate covariance functions for point-referenced data. Compared to alternative approaches, our method provides more reliable estimates for long-range dependence. Several numerical studies are performed to demonstrate the efficacy and performance of our method. Also, we illustrate our method using precipitation data from the Spatial Interpolation Comparison 97 project.
引用
收藏
页码:493 / 501
页数:9
相关论文
共 47 条
[1]  
[Anonymous], 1991, Statistics, DOI DOI 10.1080/02331889108802286
[2]  
[Anonymous], 1998, J GEOGRAPHIC INFORM
[3]   VARIOGRAM MODELS MUST BE POSITIVE-DEFINITE [J].
ARMSTRONG, M ;
JABIN, R .
JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY, 1981, 13 (05) :455-459
[4]   THE VARIOGRAM SILL AND THE SAMPLE VARIANCE [J].
BARNES, RJ .
MATHEMATICAL GEOLOGY, 1991, 23 (04) :673-678
[5]  
Bochner S., 1933, FUND MATH, V20, P262
[6]  
Bosman Peter A. N., 1999, ALGORITHMIC FRAMEWOR
[7]  
Cai T., 2010, NONPARAMETRIC COVARI
[8]   Genetic algorithms and their statistical applications: An introduction [J].
Chatterjee, S ;
Laudato, M ;
Lynch, LA .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1996, 22 (06) :633-651
[9]  
Cheney E.W., 2009, COURSE APPROXIMATION, V101
[10]   An evaluation of a non-parametric method of estimating semi-variograms of isotropic spatial processes [J].
Cherry, S ;
Banfield, J ;
Quimby, WF .
JOURNAL OF APPLIED STATISTICS, 1996, 23 (04) :435-449