Semi-supervised hyperspectral unmixing dataset creation methods for unmixing algorithm analysis

被引:0
作者
Paura, Vytautas [1 ]
Marcinkevicius, Virginijus [1 ]
机构
[1] Vilnius Univ, Inst Data Sci & Digital Technol, Akad Str 4, Vilnius, Lithuania
来源
IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXIX | 2023年 / 12733卷
关键词
Hyperspectral; Unmixing; Machine Learning;
D O I
10.1117/12.2679826
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Hyperspectral imaging is part of a growing remote sensing industry used in various applications like food or agriculture industries. Labeling hyperspectral data cubes is a resource and time intensive task. In order to try and speed up the labeling procedure, we propose a semi-supervised machine learning methodology to improve labeling speed at a cost of computational resources. An experiment was created to test the viability of this methodology. Gathered results show low hyperspectral label prediction (classification) accuracy using simple and fast neural networks.
引用
收藏
页数:6
相关论文
共 4 条
[1]   Deep Learning for Classification of Hyperspectral Data [J].
Audebert, Nicolas ;
Le Saux, Bertrand ;
Lefevre, Sebastien .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2019, 7 (02) :159-173
[2]   Spectral-Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network [J].
Li, Ying ;
Zhang, Haokui ;
Shen, Qiang .
REMOTE SENSING, 2017, 9 (01)
[3]  
MGrana MA, Hyperspectral Remote Sensing Scenes
[4]  
Wikipedia, CIE 1931 color space