Vision-based real-time structural vibration measurement through deep-learning-based detection and tracking methods

被引:87
|
作者
Pan, Xiao [1 ]
Yang, T. Y. [1 ]
Xiao, Yifei [1 ]
Yao, Hongcan [1 ,2 ]
Adeli, Hojjat [3 ]
机构
[1] Univ British Columbia, Dept Civil Engn, Vancouver, BC, Canada
[2] Guangzhou Univ, Sch Civil Engn, Guangzhou, Peoples R China
[3] Ohio State Univ, Dept Civil Environm & Geodet Engn, Biomed Informat & Neurosci, Columbus, OH 43210 USA
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Structural vibration measurement; Deep learning; Computer vision; Object detection; IDENTIFICATION; INSPECTION; SYSTEM; DELAY;
D O I
10.1016/j.engstruct.2023.115676
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Structural vibration measurement is crucial in structural health monitoring and structural laboratory tests. Traditional contact type sensors are usually required to be attached to the test specimens, which may be difficult to install, and may affect the structural properties and response. Non-contact type wireless sensors are usually expensive and require specialized workers to install and operate. In recent years, vision-based tracking methods for structural vibration measurement have gained increasing interests due to their high accuracy, non-contact feature and low cost. However, traditional vision-based tracking algorithms are susceptible to external envi-ronmental conditions such as illumination and background noise. In this paper, two real-time methods, YOLOv3-tiny and YOLOv3-tiny-KLT, are proposed to track structural motions. In the first method, YOLOv3-tiny is established based on the YOLOv3 architecture to localize customized markers where structural displacements are directly determined from the bounding boxes generated. The second method, YOLOv3-tiny-KLT, is a more advanced method which combines the YOLOv3-tiny detector and the traditional KLT tracking algorithm. The pretrained YOLOv3-tiny is deployed to localize the targets automatically, which will then be tracked by Kanade-Lucas-Tomasi algorithm. YOLOv3-tiny is intended to provide baseline vibration measurement when the KLT tracking gets lost. The proposed methods were implemented for the videos of shake table tests on a two-storey steel structure. Parametric studies were conducted for the YOLOv3-tiny-KLT method to examine its sensitivity to the tracking parameters. The results show that the proposed method is capable of achieving real-time speed and high accuracy, when compared with the traditional displacement sensors including linear variable differential transducer (LVDT) and String Pots. It is also found that the combined YOLOv3-tiny-KLT approach achieves higher accuracy than YOLOv3-tiny only method, and higher robustness than KLT only method against illumi-nation changes and background noise.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Real-time multiple object tracking using deep learning methods
    Dimitrios Meimetis
    Ioannis Daramouskas
    Isidoros Perikos
    Ioannis Hatzilygeroudis
    Neural Computing and Applications, 2023, 35 : 89 - 118
  • [42] Vision-based seam tracking for GMAW fillet welding based on keypoint detection deep learning model
    Mobaraki, Mobina
    Ahani, Soodeh
    Gonzalez, Ringo
    Yi, Kwang Moo
    Van Heusden, Klaske
    Dumont, Guy A.
    JOURNAL OF MANUFACTURING PROCESSES, 2024, 117 : 315 - 328
  • [43] Machine learning-based real-time tracking for concrete vibration
    Quan, Yuhu
    Wang, Fenglai
    AUTOMATION IN CONSTRUCTION, 2022, 140
  • [44] Deep Learning for Accurate Corner Detection in Computer Vision-Based Inspection
    Ercan, M. Fikret
    Ben Wang, Ricky
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT II, 2021, 12950 : 45 - 54
  • [45] Adaptive Deep Learning for a Vision-based Fall Detection
    Doulamis, Anastasios
    Doulamis, Nikolaos
    11TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2018), 2018, : 558 - 565
  • [46] Deep-Learning-Based Detection of Segregations for Ultrasonic Testing
    Elischberger, Frederik
    Bamberg, Joachim
    Jiang, Xiaoyi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [47] Integrated real-time vision-based preceding vehicle detection in urban roads
    Chong, Yanwen
    Chen, Wu
    Li, Zhilin
    Lam, William H. K.
    Zheng, Chunhou
    Li, Qingquan
    NEUROCOMPUTING, 2013, 116 : 144 - 149
  • [48] Time-Varying Motion Filtering for Vision-Based Nonstationary Vibration Measurement
    Liu, Zhen
    He, Qingbo
    Chen, Shiqian
    Peng, Zhike
    Zhang, Wenming
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (06) : 3907 - 3916
  • [49] Vision-Based Real-Time Bolt Loosening Detection by Identifying Anti-Loosening Lines
    Lei, Wenyang
    Yuan, Fang
    Guo, Jiang
    Wang, Haoyang
    Geng, Zaiming
    Wu, Tao
    Gong, Haipeng
    SENSORS, 2024, 24 (20)
  • [50] Vision-Based Deep Learning for UAVs Collaboration
    Arola, Sebastien
    Akhloufi, Moulay A.
    UNMANNED SYSTEMS TECHNOLOGY XXI, 2019, 11021