Learning Depth Vision-Based Personalized Robot Navigation From Dynamic Demonstrations in Virtual Reality

被引:4
作者
de Heuvel, Jorge [1 ]
Corral, Nathan [1 ]
Kreis, Benedikt [1 ]
Conradi, Jacobus [2 ]
Driemel, Anne [2 ,3 ]
Bennewitz, Maren [1 ,3 ]
机构
[1] Univ Bonn, Humanoid Robots Lab, Bonn, Germany
[2] Univ Bonn, Grp Algorithms & Complex, Bonn, Germany
[3] Lamarr Inst Machine Learning & Artificial Intelli, Dortmund, Germany
来源
2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2023年
关键词
D O I
10.1109/IROS55552.2023.10341370
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For the best human-robot interaction experience, the robot's navigation policy should take into account personal preferences of the user. In this paper, we present a learning framework complemented by a perception pipeline to train a depth vision-based, personalized navigation controller from user demonstrations. Our virtual reality interface enables the demonstration of robot navigation trajectories under motion of the user for dynamic interaction scenarios. The novel perception pipeline enrolls a variational autoencoder in combination with a motion predictor. It compresses the perceived depth images to a latent state representation to enable efficient reasoning of the learning agent about the robot's dynamic environment. In a detailed analysis and ablation study, we evaluate different configurations of the perception pipeline. To further quantify the navigation controller's quality of personalization, we develop and apply a novel metric to measure preference reflection based on the Frechet Distance. We discuss the robot's navigation performance in various virtual scenes and demonstrate the first personalized robot navigation controller that solely relies on depth images. A supplemental video highlighting our approach is available online1.
引用
收藏
页码:6757 / 6764
页数:8
相关论文
共 21 条
[1]   Social LSTM: Human Trajectory Prediction in Crowded Spaces [J].
Alahi, Alexandre ;
Goel, Kratarth ;
Ramanathan, Vignesh ;
Robicquet, Alexandre ;
Li Fei-Fei ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :961-971
[2]   COMPUTING THE FRECHET DISTANCE BETWEEN 2 POLYGONAL CURVES [J].
ALT, H ;
GODAU, M .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1995, 5 (1-2) :75-91
[3]  
Chen Changan, 2019, 2019 INT C ROB AUT I
[4]  
Coumans E., 2016, Pybullet: Physics simulation for games visual effects robotics and reinforcement learning
[5]  
de Heuvel J., 2022, 2022 31 IEEE INT C R
[6]   Soft plus Hardwired attention: An LSTM framework for human trajectory prediction and abnormal event detection [J].
Fernando, Tharindu ;
Denman, Simon ;
Sridharan, Sridha ;
Fookes, Clinton .
NEURAL NETWORKS, 2018, 108 :466-478
[7]  
Francis A., 2023, ARXIV230616740CS
[8]  
Fujimoto S, 2018, PR MACH LEARN RES, V80
[9]  
Gao X., 2019, 2019 IEEE 15 INT C A
[10]   Learning a State Representation and Navigation in Cluttered and Dynamic Environments [J].
Hoeller, David ;
Wellhausen, Lorenz ;
Farshidian, Farbod ;
Hutter, Marco .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) :5081-5088